Semimechanistic Modeling of the Effects of Blast Overpressure Exposure on Cefazolin Pharmacokinetics in Mice

Cefazolin is a first-line antibiotic to treat infection related to deployment-associated blast injuries. Prior literature demonstrated a 331% increase cefazolin liver area under the curve (AUC) in mice exposed to a survivable blast compared with controls. We repeated the experiment, validated the fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of pharmacology and experimental therapeutics 2021-11, Vol.379 (2), p.175-181
Hauptverfasser: Selig, Daniel J, Chin, Geoffrey C, Bobrov, Alexander G, DeLuca, Jesse P, Getnet, Derese, Livezey, Jeffrey R, Long, Joseph B, Sajja, Venkatasivasai S, Swierczewski, Brett E, Tyner, Stuart D, Antonic, Vlado
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cefazolin is a first-line antibiotic to treat infection related to deployment-associated blast injuries. Prior literature demonstrated a 331% increase cefazolin liver area under the curve (AUC) in mice exposed to a survivable blast compared with controls. We repeated the experiment, validated the findings, and established a semimechanistic two-compartment pharmacokinetic (PK) model with effect compartments representing the liver and skin. We found that blast statistically significantly increased the pseudo-partition coefficient to the liver by 326% (95% confidence interval: 76-737%), which corresponds to the observed 331% increase in cefazolin liver AUC described previously. To a lesser extent, plasma AUC in blasted mice increased 14-45% compared with controls. Nevertheless, the effects of blast on cefazolin PK were transient, normalizing by 10 hours after the dose. It is unclear as to how this blast effect t emporally translates to humans; however, given the short-lived effect on PK, there is insufficient evidence to recommend cefazolin dosing changes based on blast overpressure injury alone. Clinicians should be aware that cefazolin may cause drug-induced liver injury with a single dose and the risk may be higher in patients with blast overpressure injury based on our findings. SIGNIFICANCE STATEMENT: Blast exposure significantly, but transiently, alters cefazolin pharmacokinetics in mice. The questions of whether other medications or potential long-term consequences in humans need further exploration.
ISSN:0022-3565
1521-0103
DOI:10.1124/jpet.121.000797