Insertion of Calcium-Permeable AMPA Receptors during Epileptiform Activity In Vitro Modulates Excitability of Principal Neurons in the Rat Entorhinal Cortex
Epileptic activity leads to rapid insertion of calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (CP-AMPARs) into the synapses of cortical and hippocampal glutamatergic neurons, which generally do not express them. The physiological significance of this process is not...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2021-11, Vol.22 (22), p.12174 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Epileptic activity leads to rapid insertion of calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (CP-AMPARs) into the synapses of cortical and hippocampal glutamatergic neurons, which generally do not express them. The physiological significance of this process is not yet fully understood; however, it is usually assumed to be a pathological process that augments epileptic activity. Using whole-cell patch-clamp recordings in rat entorhinal cortex slices, we demonstrate that the timing of epileptiform discharges, induced by 4-aminopyridine and gabazine, is determined by the shunting effect of Ca
-dependent slow conductance, mediated predominantly by K
-channels. The blockade of CP-AMPARs by IEM-1460 eliminates this extra conductance and consequently increases the rate of discharge generation. The blockade of NMDARs reduced the additional conductance to a lesser extent than the blockade of CP-AMPARs, indicating that CP-AMPARs are a more significant source of intracellular Ca
. The study's main findings were implemented in a mathematical model, which reproduces the shunting effect of activity-dependent conductance on the generation of discharges. The obtained results suggest that the expression of CP-AMPARs in principal neurons reduces the discharge generation rate and may be considered as a protective mechanism. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms222212174 |