Transmittance Control of a Water-Repellent-Coated Layer on a Tensioned Web in a Roll-to-Roll Slot-Die Coating System

Solar cells are important alternatives to fossil fuels for energy generation in today’s world, where the demand for alternative, renewable sources of energy is increasing. However, solar cells, which are installed outdoors, are susceptible to pollution by environmental factors. A solution to overcom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2021-11, Vol.13 (22), p.4003
Hauptverfasser: Kim, Seongyong, Jo, Minho, Lee, Jongsu, Lee, Changwoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solar cells are important alternatives to fossil fuels for energy generation in today’s world, where the demand for alternative, renewable sources of energy is increasing. However, solar cells, which are installed outdoors, are susceptible to pollution by environmental factors. A solution to overcome this limitation involves coating solar cell surfaces with functional coatings. In this study, we propose a transmittance control method for a tensioned web in a roll-to-roll, transparent, water-repellent film coating. First, we analyzed the effects of process conditions on the transmittance and contact angle of the transparent water-repellent film during roll-to-roll slot-die coating. It was confirmed that the tension was the most dominant factor, followed by the coating gap. Through the tension control, the transmittance was changed by 3.27%, and the contact angle of the DI water was changed by 17.7°. In addition, it was confirmed that the transmittance was changed by 0.8% and the contact angle of DI water by 3.9° via the coating gap control. Based on these results, a transmittance prediction model was developed according to the tension and coating gap, and was then verified experimentally. Finally, a water-repellent film with a high transmittance of 89.77% was obtained using this model.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym13224003