Predicting master transcription factors from pan-cancer expression data

Critical developmental “master transcription factors” (MTFs) can be subverted during tumorigenesis to control oncogenic transcriptional programs. Current approaches to identifying MTFs rely on ChIP-seq data, which is unavailable for many cancers. We developed the CaCTS (Cancer Core Transcription fac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2021-11, Vol.7 (48), p.eabf6123-eabf6123
Hauptverfasser: Reddy, Jessica, Fonseca, Marcos A S, Corona, Rosario I, Nameki, Robbin, Segato Dezem, Felipe, Klein, Isaac A, Chang, Heidi, Chaves-Moreira, Daniele, Afeyan, Lena K, Malta, Tathiane M, Lin, Xianzhi, Abbasi, Forough, Font-Tello, Alba, Sabedot, Thais, Cejas, Paloma, Rodríguez-Malavé, Norma, Seo, Ji-Heui, Lin, De-Chen, Matulonis, Ursula, Karlan, Beth Y, Gayther, Simon A, Pasaniuc, Bogdan, Gusev, Alexander, Noushmehr, Houtan, Long, Henry, Freedman, Matthew L, Drapkin, Ronny, Young, Richard A, Abraham, Brian J, Lawrenson, Kate
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Critical developmental “master transcription factors” (MTFs) can be subverted during tumorigenesis to control oncogenic transcriptional programs. Current approaches to identifying MTFs rely on ChIP-seq data, which is unavailable for many cancers. We developed the CaCTS (Cancer Core Transcription factor Specificity) algorithm to prioritize candidate MTFs using pan-cancer RNA sequencing data. CaCTS identified candidate MTFs across 34 tumor types and 140 subtypes including predictions for cancer types/subtypes for which MTFs are unknown, including e.g. PAX8, SOX17, and MECOM as candidates in ovarian cancer (OvCa). In OvCa cells, consistent with known MTF properties, these factors are required for viability, lie proximal to superenhancers, co-occupy regulatory elements globally, co-bind loci encoding OvCa biomarkers, and are sensitive to pharmacologic inhibition of transcription. Our predictions of MTFs, especially for tumor types with limited understanding of transcriptional drivers, pave the way to therapeutic targeting of MTFs in a broad spectrum of cancers.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.abf6123