Locating and Quantifying Carbon Steel Corrosion Rates Linked to Fungal B20 Biodiesel Degradation

Fungi that degrade B20 biodiesel in storage tanks have also been linked to microbiologically influenced corrosion (MIC). A member of the filamentous fungal genus Paecilomyces and a yeast from the genus Wickerhamomyces were isolated from heavily contaminated B20 storage tanks from multiple Air Force...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and environmental microbiology 2021-11, Vol.87 (24), p.e0117721-e0117721
Hauptverfasser: Floyd, James G, Stamps, Blake W, Goodson, Wendy J, Stevenson, Bradley S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fungi that degrade B20 biodiesel in storage tanks have also been linked to microbiologically influenced corrosion (MIC). A member of the filamentous fungal genus Paecilomyces and a yeast from the genus Wickerhamomyces were isolated from heavily contaminated B20 storage tanks from multiple Air Force bases. Although these taxa were linked to microbiologically influenced corrosion , precise measurement of their corrosion rates and pitting severity on carbon steel was not available. In the experiments described here, we directly link fungal growth on B20 biodiesel to higher corrosion rates and pitting corrosion of carbon steel under controlled conditions. When these fungi were growing solely on B20 biodiesel for carbon and energy, consumption of FAME and -alkanes was observed. The corrosion rates for both fungi were highest at the interface between the B20 biodiesel and the aqueous medium, where they acidified the medium and produced deeper pits than abiotic controls. Paecilomyces produced the most corrosion of carbon steel and produced the greatest pitting damage. This study characterizes and quantifies the corrosion of carbon steel by fungi that are common in fouled B20 biodiesel through their metabolism of the fuel, providing valuable insight for assessing MIC associated with storing and dispensing B20 biodiesel. Biodiesel is widely used across the United States and worldwide, blended with ultra-low-sulfur diesel in various concentrations. In this study, we were able to demonstrate that the filamentous fungus Paecilomyces AF001 and the yeast Wickerhamomyces SE3 were able to degrade fatty acid methyl esters and alkanes in biodiesel, causing increases in acidity. Both fungi also accelerated the corrosion of carbon steel, especially at the interface of the fuel and water, where their biofilms were located. This research provides controlled, quantified measurements and the localization of microbiologically influenced corrosion caused by common fungal contaminants in biodiesel fuels.
ISSN:0099-2240
1098-5336
DOI:10.1128/AEM.01177-21