Berry curvature generation detected by Nernst responses in ferroelectric Weyl semimetal

The quest for nonmagnetic Weyl semimetals with high tunability of phase has remained a demanding challenge. As the symmetry-breaking control parameter, the ferroelectric order can be steered to turn on/off the Weyl semimetals phase, adjust the band structures around the Fermi level, and enlarge/shri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-11, Vol.118 (44), p.1-6
Hauptverfasser: Zhang, Cheng-Long, Liang, Tian, Bahramy, M. S., Ogawa, Naoki, Kocsis, Vilmos, Ueda, Kentaro, Kaneko, Yoshio, Kriener, Markus, Tokura, Yoshinori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The quest for nonmagnetic Weyl semimetals with high tunability of phase has remained a demanding challenge. As the symmetry-breaking control parameter, the ferroelectric order can be steered to turn on/off the Weyl semimetals phase, adjust the band structures around the Fermi level, and enlarge/shrink the momentum separation of Weyl nodes which generate the Berry curvature as the emergent magnetic field. Here, we report the realization of a ferroelectric nonmagnetic Weyl semimetal based on indium-doped Pb1–xSnₓTe alloy in which the underlying inversion symmetry as well as mirror symmetry are broken with the strength of ferroelectricity adjustable via tuning the indium doping level and Sn/Pb ratio. The transverse thermoelectric effect (i.e., Nernst effect), both for out-of-plane and in-plane magnetic field geometry, is exploited as a Berry curvature–sensitive experimental probe to manifest the generation of Berry curvature via the redistribution of Weyl nodes under magnetic fields. The results demonstrate a clean, nonmagnetic Weyl semimetal coupled with highly tunable ferroelectric order, providing an ideal platform for manipulating the Weyl fermions in nonmagnetic systems.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2111855118