Berry curvature generation detected by Nernst responses in ferroelectric Weyl semimetal
The quest for nonmagnetic Weyl semimetals with high tunability of phase has remained a demanding challenge. As the symmetry-breaking control parameter, the ferroelectric order can be steered to turn on/off the Weyl semimetals phase, adjust the band structures around the Fermi level, and enlarge/shri...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-11, Vol.118 (44), p.1-6 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The quest for nonmagnetic Weyl semimetals with high tunability of phase has remained a demanding challenge. As the symmetry-breaking control parameter, the ferroelectric order can be steered to turn on/off the Weyl semimetals phase, adjust the band structures around the Fermi level, and enlarge/shrink the momentum separation of Weyl nodes which generate the Berry curvature as the emergent magnetic field. Here, we report the realization of a ferroelectric nonmagnetic Weyl semimetal based on indium-doped Pb1–xSnₓTe alloy in which the underlying inversion symmetry as well as mirror symmetry are broken with the strength of ferroelectricity adjustable via tuning the indium doping level and Sn/Pb ratio. The transverse thermoelectric effect (i.e., Nernst effect), both for out-of-plane and in-plane magnetic field geometry, is exploited as a Berry curvature–sensitive experimental probe to manifest the generation of Berry curvature via the redistribution of Weyl nodes under magnetic fields. The results demonstrate a clean, nonmagnetic Weyl semimetal coupled with highly tunable ferroelectric order, providing an ideal platform for manipulating the Weyl fermions in nonmagnetic systems. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.2111855118 |