Phase separation in fluids with many interacting components

Fluids in natural systems, like the cytoplasm of a cell, often contain thousands of molecular species that are organized into multiple coexisting phases that enable diverse and specific functions. How interactions between numerous molecular species encode for various emergent phases is not well unde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-11, Vol.118 (45), p.1-8
Hauptverfasser: Shrinivas, Krishna, Brenner, Michael P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fluids in natural systems, like the cytoplasm of a cell, often contain thousands of molecular species that are organized into multiple coexisting phases that enable diverse and specific functions. How interactions between numerous molecular species encode for various emergent phases is not well understood. Here, we leverage approaches from random-matrix theory and statistical physics to describe the emergent phase behavior of fluid mixtures with many species whose interactions are drawn randomly from an underlying distribution. Through numerical simulation and stability analyses, we show that these mixtures exhibit staged phase-separation kinetics and are characterized by multiple coexisting phases at steady state with distinct compositions. Random-matrix theory predicts the number of coexisting phases, validated by simulations with diverse component numbers and interaction parameters. Surprisingly, this model predicts an upper bound on the number of phases, derived from dynamical considerations, that is much lower than the limit from the Gibbs phase rule, which is obtained from equilibrium thermodynamic constraints. We design ensembles that encode either linear or nonmonotonic scaling relationships between the number of components and coexisting phases, which we validate through simulation and theory. Finally, inspired by parallels in biological systems, we show that including nonequilibrium turnover of components through chemical reactions can tunably modulate the number of coexisting phases at steady state without changing overall fluid composition. Together, our study provides a model framework that describes the emergent dynamical and steady-state phase behavior of liquid-like mixtures with many interacting constituents.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2108551118