Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond

Microwave kinetic inductance detectors (MKIDs) provide a compelling path forward to the large-format polarimeter, imaging, and spectrometer arrays needed for next-generation experiments in millimeter-wave cosmology and astronomy. We describe the development of feedhorn-coupled MKID detectors for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of low temperature physics 2018, Vol.193 (3-4), p.120-127
Hauptverfasser: Austermann, J. E., Beall, J. A., Bryan, S. A., Dober, B., Gao, J., Hilton, G., Hubmayr, J., Mauskopf, P., McKenney, C. M., Simon, S. M., Ullom, J. N., Vissers, M. R., Wilson, G. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 3-4
container_start_page 120
container_title Journal of low temperature physics
container_volume 193
creator Austermann, J. E.
Beall, J. A.
Bryan, S. A.
Dober, B.
Gao, J.
Hilton, G.
Hubmayr, J.
Mauskopf, P.
McKenney, C. M.
Simon, S. M.
Ullom, J. N.
Vissers, M. R.
Wilson, G. W.
description Microwave kinetic inductance detectors (MKIDs) provide a compelling path forward to the large-format polarimeter, imaging, and spectrometer arrays needed for next-generation experiments in millimeter-wave cosmology and astronomy. We describe the development of feedhorn-coupled MKID detectors for the TolTEC millimeter-wave imaging polarimeter being constructed for the 50-m Large Millimeter Telescope (LMT). Observations with TolTEC are planned to begin in early 2019. TolTEC will comprise ∼ 7000 polarization-sensitive MKIDs and will represent the first MKID arrays fabricated and deployed on monolithic 150 mm diameter silicon wafers—a critical step toward future large-scale experiments with over 10 5 detectors. TolTEC will operate in observational bands at 1.1, 1.4, and 2.0 mm and will use dichroic filters to define a physically independent focal plane for each passband, thus allowing the polarimeters to use simple, direct-absorption inductive structures that are impedance matched to incident radiation. This work is part of a larger program at NIST-Boulder to develop MKID-based detector technologies for use over a wide range of photon energies spanning millimeter-waves to X-rays. We present the detailed pixel layout and describe the methods, tools, and flexible design parameters that allow this solution to be optimized for use anywhere in the millimeter and sub-millimeter bands. We also present measurements of prototype devices operating in the 1.1 mm band and compare the observed optical performance to that predicted from models and simulations.
doi_str_mv 10.1007/s10909-018-1949-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8607460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118351965</sourcerecordid><originalsourceid>FETCH-LOGICAL-p211t-5c6e264eb7bea14339d3c522364345ce42c02904590cc90f9e192ba0716d5d7f3</originalsourceid><addsrcrecordid>eNpVkV1LwzAUhoMobk5_gHcFr6MnX21zI-icOpzoxYaXIU3T2dEls2kH-_dmbCBeHTjn4eU9PAhdE7glANldICBBYiA5JpJLLE7QkIiM4YyJ7BQNASjFlEoyQBchrABA5ik7RwPGcyJELoZo8V43Tb22nW3xl97a5NM3uj0sQrIItVsmb7WzXW2SqSt702lnbPIU76bzEal8m8x9M5-ME-3K5NHuvCsv0Vmlm2CvjnOEFs-T-fgVzz5epuOHGd5QQjosTGppym2RFVYTzpgsmRGUspQzLozl1ACVwIUEYyRU0hJJCw0ZSUtRZhUboftD7qYv1rY01nWtbtQmPqDbnfK6Vv8vrv5WS79VeQoZTyEG3BwDWv_T29Cple9bFzur2DBngshURIoeqBCT3dK2fxQBtVehDipUVKH2KpRgvzyseu4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118351965</pqid></control><display><type>article</type><title>Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond</title><source>SpringerNature Journals</source><creator>Austermann, J. E. ; Beall, J. A. ; Bryan, S. A. ; Dober, B. ; Gao, J. ; Hilton, G. ; Hubmayr, J. ; Mauskopf, P. ; McKenney, C. M. ; Simon, S. M. ; Ullom, J. N. ; Vissers, M. R. ; Wilson, G. W.</creator><creatorcontrib>Austermann, J. E. ; Beall, J. A. ; Bryan, S. A. ; Dober, B. ; Gao, J. ; Hilton, G. ; Hubmayr, J. ; Mauskopf, P. ; McKenney, C. M. ; Simon, S. M. ; Ullom, J. N. ; Vissers, M. R. ; Wilson, G. W.</creatorcontrib><description>Microwave kinetic inductance detectors (MKIDs) provide a compelling path forward to the large-format polarimeter, imaging, and spectrometer arrays needed for next-generation experiments in millimeter-wave cosmology and astronomy. We describe the development of feedhorn-coupled MKID detectors for the TolTEC millimeter-wave imaging polarimeter being constructed for the 50-m Large Millimeter Telescope (LMT). Observations with TolTEC are planned to begin in early 2019. TolTEC will comprise ∼ 7000 polarization-sensitive MKIDs and will represent the first MKID arrays fabricated and deployed on monolithic 150 mm diameter silicon wafers—a critical step toward future large-scale experiments with over 10 5 detectors. TolTEC will operate in observational bands at 1.1, 1.4, and 2.0 mm and will use dichroic filters to define a physically independent focal plane for each passband, thus allowing the polarimeters to use simple, direct-absorption inductive structures that are impedance matched to incident radiation. This work is part of a larger program at NIST-Boulder to develop MKID-based detector technologies for use over a wide range of photon energies spanning millimeter-waves to X-rays. We present the detailed pixel layout and describe the methods, tools, and flexible design parameters that allow this solution to be optimized for use anywhere in the millimeter and sub-millimeter bands. We also present measurements of prototype devices operating in the 1.1 mm band and compare the observed optical performance to that predicted from models and simulations.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-018-1949-5</identifier><identifier>PMID: 34815585</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Astronomy ; Characterization and Evaluation of Materials ; Computer simulation ; Condensed Matter Physics ; Cosmology ; Design parameters ; Detectors ; Focal plane ; Imaging polarimeters ; Impedance matching ; Incident radiation ; Inductance ; Low temperature physics ; Magnetic Materials ; Magnetism ; Millimeter waves ; Physics ; Physics and Astronomy ; Sensors ; Silicon wafers</subject><ispartof>Journal of low temperature physics, 2018, Vol.193 (3-4), p.120-127</ispartof><rights>This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6338-0069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10909-018-1949-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10909-018-1949-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,782,786,887,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Austermann, J. E.</creatorcontrib><creatorcontrib>Beall, J. A.</creatorcontrib><creatorcontrib>Bryan, S. A.</creatorcontrib><creatorcontrib>Dober, B.</creatorcontrib><creatorcontrib>Gao, J.</creatorcontrib><creatorcontrib>Hilton, G.</creatorcontrib><creatorcontrib>Hubmayr, J.</creatorcontrib><creatorcontrib>Mauskopf, P.</creatorcontrib><creatorcontrib>McKenney, C. M.</creatorcontrib><creatorcontrib>Simon, S. M.</creatorcontrib><creatorcontrib>Ullom, J. N.</creatorcontrib><creatorcontrib>Vissers, M. R.</creatorcontrib><creatorcontrib>Wilson, G. W.</creatorcontrib><title>Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>Microwave kinetic inductance detectors (MKIDs) provide a compelling path forward to the large-format polarimeter, imaging, and spectrometer arrays needed for next-generation experiments in millimeter-wave cosmology and astronomy. We describe the development of feedhorn-coupled MKID detectors for the TolTEC millimeter-wave imaging polarimeter being constructed for the 50-m Large Millimeter Telescope (LMT). Observations with TolTEC are planned to begin in early 2019. TolTEC will comprise ∼ 7000 polarization-sensitive MKIDs and will represent the first MKID arrays fabricated and deployed on monolithic 150 mm diameter silicon wafers—a critical step toward future large-scale experiments with over 10 5 detectors. TolTEC will operate in observational bands at 1.1, 1.4, and 2.0 mm and will use dichroic filters to define a physically independent focal plane for each passband, thus allowing the polarimeters to use simple, direct-absorption inductive structures that are impedance matched to incident radiation. This work is part of a larger program at NIST-Boulder to develop MKID-based detector technologies for use over a wide range of photon energies spanning millimeter-waves to X-rays. We present the detailed pixel layout and describe the methods, tools, and flexible design parameters that allow this solution to be optimized for use anywhere in the millimeter and sub-millimeter bands. We also present measurements of prototype devices operating in the 1.1 mm band and compare the observed optical performance to that predicted from models and simulations.</description><subject>Astronomy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>Cosmology</subject><subject>Design parameters</subject><subject>Detectors</subject><subject>Focal plane</subject><subject>Imaging polarimeters</subject><subject>Impedance matching</subject><subject>Incident radiation</subject><subject>Inductance</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Millimeter waves</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sensors</subject><subject>Silicon wafers</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkV1LwzAUhoMobk5_gHcFr6MnX21zI-icOpzoxYaXIU3T2dEls2kH-_dmbCBeHTjn4eU9PAhdE7glANldICBBYiA5JpJLLE7QkIiM4YyJ7BQNASjFlEoyQBchrABA5ik7RwPGcyJELoZo8V43Tb22nW3xl97a5NM3uj0sQrIItVsmb7WzXW2SqSt702lnbPIU76bzEal8m8x9M5-ME-3K5NHuvCsv0Vmlm2CvjnOEFs-T-fgVzz5epuOHGd5QQjosTGppym2RFVYTzpgsmRGUspQzLozl1ACVwIUEYyRU0hJJCw0ZSUtRZhUboftD7qYv1rY01nWtbtQmPqDbnfK6Vv8vrv5WS79VeQoZTyEG3BwDWv_T29Cple9bFzur2DBngshURIoeqBCT3dK2fxQBtVehDipUVKH2KpRgvzyseu4</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Austermann, J. E.</creator><creator>Beall, J. A.</creator><creator>Bryan, S. A.</creator><creator>Dober, B.</creator><creator>Gao, J.</creator><creator>Hilton, G.</creator><creator>Hubmayr, J.</creator><creator>Mauskopf, P.</creator><creator>McKenney, C. M.</creator><creator>Simon, S. M.</creator><creator>Ullom, J. N.</creator><creator>Vissers, M. R.</creator><creator>Wilson, G. W.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6338-0069</orcidid></search><sort><creationdate>2018</creationdate><title>Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond</title><author>Austermann, J. E. ; Beall, J. A. ; Bryan, S. A. ; Dober, B. ; Gao, J. ; Hilton, G. ; Hubmayr, J. ; Mauskopf, P. ; McKenney, C. M. ; Simon, S. M. ; Ullom, J. N. ; Vissers, M. R. ; Wilson, G. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p211t-5c6e264eb7bea14339d3c522364345ce42c02904590cc90f9e192ba0716d5d7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astronomy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>Cosmology</topic><topic>Design parameters</topic><topic>Detectors</topic><topic>Focal plane</topic><topic>Imaging polarimeters</topic><topic>Impedance matching</topic><topic>Incident radiation</topic><topic>Inductance</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Millimeter waves</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sensors</topic><topic>Silicon wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Austermann, J. E.</creatorcontrib><creatorcontrib>Beall, J. A.</creatorcontrib><creatorcontrib>Bryan, S. A.</creatorcontrib><creatorcontrib>Dober, B.</creatorcontrib><creatorcontrib>Gao, J.</creatorcontrib><creatorcontrib>Hilton, G.</creatorcontrib><creatorcontrib>Hubmayr, J.</creatorcontrib><creatorcontrib>Mauskopf, P.</creatorcontrib><creatorcontrib>McKenney, C. M.</creatorcontrib><creatorcontrib>Simon, S. M.</creatorcontrib><creatorcontrib>Ullom, J. N.</creatorcontrib><creatorcontrib>Vissers, M. R.</creatorcontrib><creatorcontrib>Wilson, G. W.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Austermann, J. E.</au><au>Beall, J. A.</au><au>Bryan, S. A.</au><au>Dober, B.</au><au>Gao, J.</au><au>Hilton, G.</au><au>Hubmayr, J.</au><au>Mauskopf, P.</au><au>McKenney, C. M.</au><au>Simon, S. M.</au><au>Ullom, J. N.</au><au>Vissers, M. R.</au><au>Wilson, G. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2018</date><risdate>2018</risdate><volume>193</volume><issue>3-4</issue><spage>120</spage><epage>127</epage><pages>120-127</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>Microwave kinetic inductance detectors (MKIDs) provide a compelling path forward to the large-format polarimeter, imaging, and spectrometer arrays needed for next-generation experiments in millimeter-wave cosmology and astronomy. We describe the development of feedhorn-coupled MKID detectors for the TolTEC millimeter-wave imaging polarimeter being constructed for the 50-m Large Millimeter Telescope (LMT). Observations with TolTEC are planned to begin in early 2019. TolTEC will comprise ∼ 7000 polarization-sensitive MKIDs and will represent the first MKID arrays fabricated and deployed on monolithic 150 mm diameter silicon wafers—a critical step toward future large-scale experiments with over 10 5 detectors. TolTEC will operate in observational bands at 1.1, 1.4, and 2.0 mm and will use dichroic filters to define a physically independent focal plane for each passband, thus allowing the polarimeters to use simple, direct-absorption inductive structures that are impedance matched to incident radiation. This work is part of a larger program at NIST-Boulder to develop MKID-based detector technologies for use over a wide range of photon energies spanning millimeter-waves to X-rays. We present the detailed pixel layout and describe the methods, tools, and flexible design parameters that allow this solution to be optimized for use anywhere in the millimeter and sub-millimeter bands. We also present measurements of prototype devices operating in the 1.1 mm band and compare the observed optical performance to that predicted from models and simulations.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34815585</pmid><doi>10.1007/s10909-018-1949-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6338-0069</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2291
ispartof Journal of low temperature physics, 2018, Vol.193 (3-4), p.120-127
issn 0022-2291
1573-7357
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8607460
source SpringerNature Journals
subjects Astronomy
Characterization and Evaluation of Materials
Computer simulation
Condensed Matter Physics
Cosmology
Design parameters
Detectors
Focal plane
Imaging polarimeters
Impedance matching
Incident radiation
Inductance
Low temperature physics
Magnetic Materials
Magnetism
Millimeter waves
Physics
Physics and Astronomy
Sensors
Silicon wafers
title Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T19%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Millimeter-Wave%20Polarimeters%20Using%20Kinetic%20Inductance%20Detectors%20for%20TolTEC%20and%20Beyond&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Austermann,%20J.%20E.&rft.date=2018&rft.volume=193&rft.issue=3-4&rft.spage=120&rft.epage=127&rft.pages=120-127&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-018-1949-5&rft_dat=%3Cproquest_pubme%3E2118351965%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118351965&rft_id=info:pmid/34815585&rfr_iscdi=true