Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond

Microwave kinetic inductance detectors (MKIDs) provide a compelling path forward to the large-format polarimeter, imaging, and spectrometer arrays needed for next-generation experiments in millimeter-wave cosmology and astronomy. We describe the development of feedhorn-coupled MKID detectors for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of low temperature physics 2018, Vol.193 (3-4), p.120-127
Hauptverfasser: Austermann, J. E., Beall, J. A., Bryan, S. A., Dober, B., Gao, J., Hilton, G., Hubmayr, J., Mauskopf, P., McKenney, C. M., Simon, S. M., Ullom, J. N., Vissers, M. R., Wilson, G. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microwave kinetic inductance detectors (MKIDs) provide a compelling path forward to the large-format polarimeter, imaging, and spectrometer arrays needed for next-generation experiments in millimeter-wave cosmology and astronomy. We describe the development of feedhorn-coupled MKID detectors for the TolTEC millimeter-wave imaging polarimeter being constructed for the 50-m Large Millimeter Telescope (LMT). Observations with TolTEC are planned to begin in early 2019. TolTEC will comprise ∼ 7000 polarization-sensitive MKIDs and will represent the first MKID arrays fabricated and deployed on monolithic 150 mm diameter silicon wafers—a critical step toward future large-scale experiments with over 10 5 detectors. TolTEC will operate in observational bands at 1.1, 1.4, and 2.0 mm and will use dichroic filters to define a physically independent focal plane for each passband, thus allowing the polarimeters to use simple, direct-absorption inductive structures that are impedance matched to incident radiation. This work is part of a larger program at NIST-Boulder to develop MKID-based detector technologies for use over a wide range of photon energies spanning millimeter-waves to X-rays. We present the detailed pixel layout and describe the methods, tools, and flexible design parameters that allow this solution to be optimized for use anywhere in the millimeter and sub-millimeter bands. We also present measurements of prototype devices operating in the 1.1 mm band and compare the observed optical performance to that predicted from models and simulations.
ISSN:0022-2291
1573-7357
DOI:10.1007/s10909-018-1949-5