Calibrating COVID-19 susceptible-exposed-infected-removed models with time-varying effective contact rates

We describe the population-based susceptible-exposed-infected-removed (SEIR) model developed by the Irish Epidemiological Modelling Advisory Group (IEMAG), which advises the Irish government on COVID-19 responses. The model assumes a time-varying effective contact rate (equivalently, a time-varying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2021-11, Vol.380 (2214)
Hauptverfasser: Gleeson, James P., Brendan Murphy, Thomas, O’Brien, Joseph D., Friel, Nial, Bargary, Norma, O'Sullivan, David J. P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe the population-based susceptible-exposed-infected-removed (SEIR) model developed by the Irish Epidemiological Modelling Advisory Group (IEMAG), which advises the Irish government on COVID-19 responses. The model assumes a time-varying effective contact rate (equivalently, a time-varying reproduction number) to model the effect of non-pharmaceutical interventions. A crucial technical challenge in applying such models is their accurate calibration to observed data, e.g. to the daily number of confirmed new cases, as the history of the disease strongly affects predictions of future scenarios. We demonstrate an approach based on inversion of the SEIR equations in conjunction with statistical modelling and spline-fitting of the data to produce a robust methodology for calibration of a wide class of models of this type. This article is part of the theme issue ‘Data science approaches to infectious disease surveillance’.
ISSN:1364-503X
1471-2962
DOI:10.1098/rsta.2021.0120