Observation of spin-space quantum transport induced by an atomic quantum point contact

Quantum transport is ubiquitous in physics. So far, quantum transport between terminals has been extensively studied in solid state systems from the fundamental point of views such as the quantized conductance to the applications to quantum devices. Recent works have demonstrated a cold-atom analog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-11, Vol.12 (1), p.6724-8, Article 6724
Hauptverfasser: Ono, Koki, Higomoto, Toshiya, Saito, Yugo, Uchino, Shun, Nishida, Yusuke, Takahashi, Yoshiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum transport is ubiquitous in physics. So far, quantum transport between terminals has been extensively studied in solid state systems from the fundamental point of views such as the quantized conductance to the applications to quantum devices. Recent works have demonstrated a cold-atom analog of a mesoscopic conductor by engineering a narrow conducting channel with optical potentials, which opens the door for a wealth of research of atomtronics emulating mesoscopic electronic devices and beyond. Here we realize an alternative scheme of the quantum transport experiment with ytterbium atoms in a two-orbital optical lattice system. Our system consists of a multi-component Fermi gas and a localized impurity, where the current can be created in the spin space by introducing the spin-dependent interaction with the impurity. We demonstrate a rich variety of localized-impurity-induced quantum transports, which paves the way for atomtronics exploiting spin degrees of freedom. Cold atoms have recently become a versatile platform for the study of quantum transport phenomena. Here the authors realize an alternative experimental scheme for quantum transport with cold atoms, by using spin-dependent impurity scattering in a spinful Fermi gas instead of spatially separated particle distributions.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-27011-2