IMMU-43. IMMUNE CONTEXTURE OF ISOCITRATE DEHYDROGENASE STRATIFIED HUMAN GLIOMAS REVEALED BY SINGLE-CELL TRANSCRIPTOMICS AND ACCESSIBLE CHROMATIN

The immune cell composition of isocitrate dehydrogenase wild type (IDH-wt) glioma patients significantly differs compared to IDH-mutant (IDH-mut) yet a detailed and unbiased understanding of their transcriptomic and epigenetic landscapes remains elusive. To this end, we performed single-cell RNA-seq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuro-oncology (Charlottesville, Va.) Va.), 2021-11, Vol.23 (Supplement_6), p.vi102-vi102
Hauptverfasser: Gupta, Pravesh, Dang, Minghao, Hao, Dapeng Hao, Bojja, Krishna, Tran, Tuan M, Shehwana, Huma, Kamiya-Matsuoka, Carlos, Li, Jianzhuo, Audia, Alessandra, Kassab, Cynthia, Ott, Martina, Gumin, Joy, Al-enazy, Sanaalarab, Balasubramaniyan, Veerakumar, DeGroot, John, Lang, Frederick, Iavarone, Antonio, Navin, Nicholas E, Heimberger, Amy B, Wang, Linghua, Bhat, Krishna
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The immune cell composition of isocitrate dehydrogenase wild type (IDH-wt) glioma patients significantly differs compared to IDH-mutant (IDH-mut) yet a detailed and unbiased understanding of their transcriptomic and epigenetic landscapes remains elusive. To this end, we performed single-cell RNA-sequencing (scRNA-seq) and single-cell Assay for Transposase-Accessible Chromatin using sequencing (sc-ATAC-seq) on ~100,000 tumor-associated immune cells from seventeen IDH mutation classified primary and recurrent human gliomas and non-glioma brains (NGBs). Our analyses revealed sixty-two transcriptionally distinct myeloid and lymphoid cell states within and across glioma subtypes and we noted microglial attrition with increasing disease severity concomitant with invading monocyte-derived cells (MDCs) and lymphocytes. Specifically, certain microglial and monocyte-derived subpopulations were associated with antigen presentation gene modules, akin to cross-presenting dendritic cells. As tissue macrophages exhibit multifaceted polarization in response to microenvironmental cues, we clarify the existence of microglia/macrophage functional states beyond M1/M2 paradigms exemplified by the presence of palmitic-, oleic- acid, and glucocorticoid responsive polarized states. We identified cytotoxic T cells with poly-functional cytolytic states mostly in recurrent IDH-wt gliomas. Furthermore, ligand-receptor interactome analyses showed a preponderance of antigen presentation/phagocytosis over the checkpoint axis in IDH-wt compared to IDH-mut gliomas. Additionally, our sc-ATAC-seq analyses revealed differences in regulatory networks in NGBs, IDH-mut, and IDH-wt glioma-associated immune cells. In particular, we noted reduced microglial usage of an iron recycling SPIC transcription factor and Interferon Regulatory Factors (IRFs); IRF1 and IRF2 in IDH-wt relative to IDH-mut and NGBs. Unique features such as amplification of 11-Zinc Finger Protein accessibility were restricted to MDCs. Finally, sc-ATAC-seq profiles of CD8+ exhausted T cells from IDH-wt showed strong enhancer accessibility on CTLA-4, Layilin, and TIM-3 but no enrichment on PD1 was seen. In summary, our study provides unprecedented granular detail of transcriptionally and epigenomically defined glioma-specific immune contexture that can be exploited for immunotherapy applications.
ISSN:1522-8517
1523-5866
DOI:10.1093/neuonc/noab196.402