CBIO-08. ENDOGENOUS DNA DOUBLE STRAND BREAKS ACTIVATE HETEROGENOUS DNA DAMAGE SIGNALING IN IDH1/2 MUTANT GLIOMAS

Isocitrate dehydrogenase 1/2 (IDH1/2) mutations are common in astrocytic glioma and are frequently coupled with TP53 and ATRX mutations. Collectively, these alterations cause genomic instability leading to high basal DNA double strand breaks (DSBs). Understanding how IDH/TP53/ATRX mutant cells proce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuro-oncology (Charlottesville, Va.) Va.), 2021-11, Vol.23 (Supplement_6), p.vi28-vi29
Hauptverfasser: Kitange, Gaspar, Vaubel, Rachael, Sarkaria, Jann
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Isocitrate dehydrogenase 1/2 (IDH1/2) mutations are common in astrocytic glioma and are frequently coupled with TP53 and ATRX mutations. Collectively, these alterations cause genomic instability leading to high basal DNA double strand breaks (DSBs). Understanding how IDH/TP53/ATRX mutant cells process endogenous DSBs may help exploit inhibitors of DNA damage response (DDR) for the treatment of patients with IDH mutant gliomas. Through systematic effort to uncover the mechanisms involved in repair of endogenous DSBs in IDH1/2 mutant GBMs, we have discovered that high basal phosphorylated DNA-PK (p-DNA-PK) was characteristic of an IDH1/TP53/ATRX mutant GBM164 patient derived xenograft (PDX) but not in another IDH1 mutant GBM196 PDX. Immunofluorescence (IF) studies in patient specimen from which GBM164 was derived showed that p-DNA-PK co-localized with g-H2AX, 53BP1 or H4K20me2 (but not p-RPA) the known surrogates of DSBs. In contrast, p-DNA-PK was absent in the patient specimen from which GBM196 was derived, which otherwise had equally intense g-H2AX immunostaining colocalized with p-RPA. An independent IF study involving 11 IDH1 wild-type (WT) and 11 IDH1 mutant GBM patient samples, the p-DNA-PK was observed in 3 (27%) of 11 IDH1 mutant samples while IDH1 WT tumors were negative for p-DNA-PK. A telomere specific fluorescence in situ hybridization (Tel-FISH) confirmed elevated alternative lengthening of telomere (ALT) activity in GBM196 (but not in GBM164) indicative of HR proficiency. Consistently, HR related genes, including BRCA1 and MRE11A, were found upregulated in ALT-positive GBM196 as compared to those in GBM164. Interestingly, ALT+ GBM196 cells were highly vulnerable to inhibitors of ATM and ATR pathways. In conclusion, IDH1/TP53/ATRX mutant gliomas can be subdivided into HR-mediated ALT-positive group, which repairs the endogenous DSBs by HR (e.g. GBM196) and an ALT-negative/p-DNA-PK group, which repairs DSBs by c-NHEJ (e.g. GBM164) and this subdivision can be developed as a prescient biomarker of sensitivity to DDR inhibitors.
ISSN:1522-8517
1523-5866
DOI:10.1093/neuonc/noab196.109