Protective effects of Rosemary extract and/or Fluoxetine on Monosodium Glutamate-induced hippocampal neurotoxicity in rat
The use of Monosodium Glutamate (MSG) as a food flavor enhancer is increasing worldwide despite its neurotoxic effects. Fluoxetine (FLX) and Rosemary extract (RE) are known to have beneficial neuroprotective properties. Rats were divided into five groups: control group; MSG group, rats received 2 g/...
Gespeichert in:
Veröffentlicht in: | Romanian journal of morphology and embryology 2021-01, Vol.62 (1), p.169-177 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of Monosodium Glutamate (MSG) as a food flavor enhancer is increasing worldwide despite its neurotoxic effects. Fluoxetine (FLX) and Rosemary extract (RE) are known to have beneficial neuroprotective properties. Rats were divided into five groups: control group; MSG group, rats received 2 g/kg/day intraperitoneal (i.p.) injections of MSG for seven days; RE/MSG group, rats received 50 mg/kg/day of oral RE for 28 days starting prior to MSG; FLX/MSG group, rats received 10 mg/kg/day of oral FLX for 28 days beginning before MSG; and RE/FLX/MSG group, received combined treatments as mentioned above. Rats underwent the Barnes maze test, in addition to histopathological, immunohistochemical, morphometric and ultrastructural evaluations for their hippocampi. MSG increased the number of errors and escaped latency in the Barnes maze test that was significantly minimized in the three treatment groups. The MSG group exhibited pyramidal cell (PC) degeneration, shrunken glial cells and massive vascular dilatation that were improved with RE and/or FLX treatment. The number of glial fibrillary acidic protein (GFAP)-immunopositive cells were increased, and the number of PCs was decreased in the MSG group, while these values were significantly reversed with the three treatment groups with the most significant improvement at RE/FLX/MSG one. Ultrastructurally, PCs were shrunken with degenerated nuclei, dilated endoplasmic reticulum, swollen mitochondria, and vacuolations in the MSG group that were improved with RE and/or FLX. In conclusion, the combined RE and FLX treatment can ameliorate the toxic effect of MSG on rat hippocampus probably through its antioxidant and anti-inflammatory effects. |
---|---|
ISSN: | 1220-0522 2066-8279 |
DOI: | 10.47162/RJME.62.1.16 |