Kinetic, spectral, and structural studies of the slow-binding inhibition of the Escherichia coli dihydrodipicolinate synthase by 2, 4-oxo-pentanoic acid

Dihydrodipicolinate synthase (DHDPS) catalyzes the first step in the biosynthetic pathway for production of l-lysine in bacteria and plants. The enzyme has received interest as a potential drug target owing to the absence of the enzyme in mammals. The DHDPS reaction is the rate limiting step in lysi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of biochemistry and biophysics 2021-05, Vol.702, p.108819-108819, Article 108819
Hauptverfasser: Karsten, William, Thomas, Leonard M., Fleming, Christian, Seabourn, Priscilla, Bruxvoort, Christina, Chooback, Lilian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dihydrodipicolinate synthase (DHDPS) catalyzes the first step in the biosynthetic pathway for production of l-lysine in bacteria and plants. The enzyme has received interest as a potential drug target owing to the absence of the enzyme in mammals. The DHDPS reaction is the rate limiting step in lysine biosynthesis and involves the condensation of l-aspartate-β-semialdehyde and pyruvate to form 2, 3-dihydrodipicolinate. 2, 4-oxo-pentanoic acid (acetopyruvate) is a slow-binding inhibitor of DHDPS that is competitive versus pyruvate with an initial Ki of about 20 μM and a final inhibition constant of about 1.4 μM. The enzyme:acetopyruvate complex displays an absorbance spectrum with a λmax at 304 nm and a longer wavelength shoulder. The rate constant for formation of the complex is 86 M−1 s−1. The enzyme forms a covalent enamine complex with the first substrate pyruvate and can be observed spectrally with a λmax at 271 nm. The spectra of the enzyme in the presence of pyruvate and acetopyruvate shows the initial formation of the pyruvate enamine intermediate followed by the slower appearance of the E:acetopyruvate spectra with a rate constant of about 0.013 s−1. The spectral studies suggest the formation of a Schiff base between acetopyruvate and K161 on enzyme that subsequently deprotonates to form a resonance stabilized anion similar to the enamine intermediate formed with pyruvate. The crystal structure of the E:acetopyruvate complex confirms the formation of the Schiff base between acetopyruvate and K161.
ISSN:0003-9861
1096-0384
DOI:10.1016/j.abb.2021.108819