Machine learning for image-based detection of patients with obstructive sleep apnea: an exploratory study
Purpose In 2-dimensional lateral cephalometric radiographs, patients with severe obstructive sleep apnea (OSA) exhibit a more crowded oropharynx in comparison with non-OSA. We tested the hypothesis that machine learning, an application of artificial intelligence (AI), could be used to detect patient...
Gespeichert in:
Veröffentlicht in: | Sleep & breathing 2021-12, Vol.25 (4), p.2297-2305 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
In 2-dimensional lateral cephalometric radiographs, patients with severe obstructive sleep apnea (OSA) exhibit a more crowded oropharynx in comparison with non-OSA. We tested the hypothesis that machine learning, an application of artificial intelligence (AI), could be used to detect patients with severe OSA based on 2-dimensional images.
Methods
A deep convolutional neural network was developed (
n
= 1258; 90%) and tested (
n
= 131; 10%) using data from 1389 (100%) lateral cephalometric radiographs obtained from individuals diagnosed with severe OSA (
n
= 867; apnea hypopnea index > 30 events/h sleep) or non-OSA (
n
= 522; apnea hypopnea index |
---|---|
ISSN: | 1520-9512 1522-1709 |
DOI: | 10.1007/s11325-021-02301-7 |