Machine learning for image-based detection of patients with obstructive sleep apnea: an exploratory study

Purpose In 2-dimensional lateral cephalometric radiographs, patients with severe obstructive sleep apnea (OSA) exhibit a more crowded oropharynx in comparison with non-OSA. We tested the hypothesis that machine learning, an application of artificial intelligence (AI), could be used to detect patient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sleep & breathing 2021-12, Vol.25 (4), p.2297-2305
Hauptverfasser: Tsuiki, Satoru, Nagaoka, Takuya, Fukuda, Tatsuya, Sakamoto, Yuki, Almeida, Fernanda R., Nakayama, Hideaki, Inoue, Yuichi, Enno, Hiroki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose In 2-dimensional lateral cephalometric radiographs, patients with severe obstructive sleep apnea (OSA) exhibit a more crowded oropharynx in comparison with non-OSA. We tested the hypothesis that machine learning, an application of artificial intelligence (AI), could be used to detect patients with severe OSA based on 2-dimensional images. Methods A deep convolutional neural network was developed ( n  = 1258; 90%) and tested ( n  = 131; 10%) using data from 1389 (100%) lateral cephalometric radiographs obtained from individuals diagnosed with severe OSA ( n  = 867; apnea hypopnea index > 30 events/h sleep) or non-OSA ( n  = 522; apnea hypopnea index
ISSN:1520-9512
1522-1709
DOI:10.1007/s11325-021-02301-7