Good and bad boundaries in ultrasound compounding: preserving anatomic boundaries while suppressing artifacts
Purpose Ultrasound compounding is to combine sonographic information captured from different angles and produce a single image. It is important for multi-view reconstruction, but as of yet there is no consensus on best practices for compounding. Current popular methods inevitably suppress or altoget...
Gespeichert in:
Veröffentlicht in: | International journal for computer assisted radiology and surgery 2021-11, Vol.16 (11), p.1957-1968 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
Ultrasound compounding is to combine sonographic information captured from different angles and produce a single image. It is important for multi-view reconstruction, but as of yet there is no consensus on best practices for compounding. Current popular methods inevitably suppress or altogether leave out bright or dark regions that are useful and potentially introduce new artifacts. In this work, we establish a new algorithm to compound the overlapping pixels from different viewpoints in ultrasound.
Methods
Inspired by image fusion algorithms and ultrasound confidence, we uniquely leverage Laplacian and Gaussian pyramids to preserve the maximum boundary contrast without overemphasizing noise, speckles, and other artifacts in the compounded image, while taking the direction of the ultrasound probe into account. Besides, we designed an algorithm that detects the useful boundaries in ultrasound images to further improve the boundary contrast.
Results
We evaluate our algorithm by comparing it with previous algorithms both qualitatively and quantitatively, and we show that our approach not only preserves both light and dark details, but also somewhat suppresses noise and artifacts, rather than amplifying them. We also show that our algorithm can improve the performance of downstream tasks like segmentation.
Conclusion
Our proposed method that is based on confidence, contrast, and both Gaussian and Laplacian pyramids appears to be better at preserving contrast at anatomic boundaries while suppressing artifacts than any of the other approaches we tested. This algorithm may have future utility with downstream tasks such as 3D ultrasound volume reconstruction and segmentation. |
---|---|
ISSN: | 1861-6410 1861-6429 |
DOI: | 10.1007/s11548-021-02464-4 |