First Report of Pectobacterium brasiliense causing soft rot on mizuna (Brassica rapa var. japonica) in the United States

Mizuna (Brassica rapa var. japonica), a member of family Brassicaceae, is a leafy vegetable having phenolic and other compounds beneficial to human health, such as natural antioxidants (Khanam et al. 2012). In October 2020, a field of mizuna (variety: Early) on Oahu island was observed having 20-30%...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant disease 2021-12, Vol.105 (12), p.4149
Hauptverfasser: Klair, Diksha, Silva, Joshua, Arizala, Eduardo Dario, Boluk, Gamze, Dobhal, Shefali, Ahmad, Amjad A, Uyeda, Jensen, Alvarez, Anne M, Arif, Mohammad
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mizuna (Brassica rapa var. japonica), a member of family Brassicaceae, is a leafy vegetable having phenolic and other compounds beneficial to human health, such as natural antioxidants (Khanam et al. 2012). In October 2020, a field of mizuna (variety: Early) on Oahu island was observed having 20-30% diseased plants. Four randomly selected infected mizuna plants, showing the symptoms of wilt and stem rot (Figure 1A-D), were collected and isolations were made to determine the pathogen. Small sections of infected stems were cut, surface sterilized with 0.6% sodium hypochlorite solution for 30 sec, followed by three consecutive rinses in distilled water. The tissues were macerated in a sterile 1.5 ml centrifuge tube containing 100 μl sterile water-macerated tissues were streaked onto crystal violet pectate medium (CVP) (Hélias et al. 2011) and incubated at 26 ± 2°C for 48 h. Isolated bacterial colonies that formed pits on the CVP plates were re-streaked onto dextrose peptone agar: Peptone (10 g/L), Dextrose (5 g/L) and Agar (17 g/L) (DPA-without tetrazolium chloride; Norman and Alvarez 1989) to obtain purified colonies for DNA isolation using DNeasy Blood and Tissue Kit (Qiagen, Germantown, MA). The two housekeeping genes (dnaA and gapA) were amplified and sequenced following the protocols used by Dobhal et al. (2020) and Boluk et al. (2020), for identity confirmation and phylogenetic analysis. Cleaned PCR products were sent to the GENEWIZ facility (Genewiz, La Jolla, CA) for sequencing of sense and antisense strands. The obtained sequences were aligned, manually edited, and consensus sequences were analyzed with BLASTn using the NCBI GenBank nucleotide and genome databases for identity confirmation. The BLASTn results demonstrated 100% query coverage of all four strains (PL248-PL251); and showed 100% identity of PL248 and PL249, and 99% identity of PL250 and PL251 with Pectobacterium brasiliense. All the sequences were submitted to the NCBI GenBank database under the following accession numbers: dnaA gene MW560271 - MW560274 (PL248 - PL251); and gapA gene MW560275 - MW560278 (PL248 - PL251). Pathogenicity was assessed by artificially inoculating 100 µl bacterial suspension of each strain (PL248 - 1.12x 10⁸ CFU/ml; PL249 - 1.32x 10⁸ CFU/ml; PL 250 - 1.2x 10⁸ CFU/ml and PL251 - 1.15x 10⁸ CFU/ml) onto four-week-old mizuna (variety: Leafy Asian Greens) plants in three replicates, using sterile pipette tips, which was stabbed into stem halfway and wrapped with par
ISSN:0191-2917
1943-7692
DOI:10.1094/PDIS-03-21-0644-PDN