A GRU-Based Method for Predicting Intention of Aerial Targets

Since a target’s operational intention in air combat is realized by a series of tactical maneuvers, its state presents the characteristics of temporal and dynamic changes. Depending only on a single moment to take inference, the traditional combat intention recognition method is neither scientific n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2021, Vol.2021 (1), p.6082242-6082242
Hauptverfasser: Teng, Fei, Song, Yafei, Wang, Gang, Zhang, Peng, Wang, Liuxing, Zhang, Zongteng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Since a target’s operational intention in air combat is realized by a series of tactical maneuvers, its state presents the characteristics of temporal and dynamic changes. Depending only on a single moment to take inference, the traditional combat intention recognition method is neither scientific nor effective enough. Based on a gated recurrent unit (GRU), a bidirectional propagation mechanism and attention mechanism are introduced in a proposed aerial target combat intention recognition method. The proposed method constructs an air combat intention characteristic set through a hierarchical approach, encodes into numeric time-series characteristics, and encapsulates domain expert knowledge and experience in labels. It uses a bidirectional gated recurrent units (BiGRU) network for deep learning of air combat characteristics and adaptively assigns characteristic weights using an attention mechanism to improve the accuracy of aerial target combat intention recognition. In order to further shorten the time for intention recognition and with a certain predictive effect, an air combat characteristic prediction module is introduced before intention recognition to establish the mapping relationship between predicted characteristics and combat intention types. Simulation experiments show that the proposed model can predict enemy aerial target combat intention one sampling point ahead of time based on 89.7% intent recognition accuracy, which has reference value and theoretical significance for assisting decision-making in real-time intention recognition.
ISSN:1687-5265
1687-5273
DOI:10.1155/2021/6082242