Size dependent infectivity of SARS-CoV-2 via respiratory droplets spread through central ventilation systems

Here we evaluate the transport of respiratory droplets that carry SARS-CoV-2 through central air handling systems in multiroom buildings. Respiratory droplet size modes arise from the bronchioles representing the lungs and lower respiratory tract, the larynx representing the upper respiratory tract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International communications in heat and mass transfer 2022-03, Vol.132, p.105748-105748, Article 105748
Hauptverfasser: Pease, Leonard F., Salsbury, Timothy I., Anderson, Kevin, Underhill, Ronald M., Flaherty, Julia E., Vlachokostas, Alex, Burns, Carolyn A., Wang, Na, Kulkarni, Gourihar, James, Daniel P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105748
container_issue
container_start_page 105748
container_title International communications in heat and mass transfer
container_volume 132
creator Pease, Leonard F.
Salsbury, Timothy I.
Anderson, Kevin
Underhill, Ronald M.
Flaherty, Julia E.
Vlachokostas, Alex
Burns, Carolyn A.
Wang, Na
Kulkarni, Gourihar
James, Daniel P.
description Here we evaluate the transport of respiratory droplets that carry SARS-CoV-2 through central air handling systems in multiroom buildings. Respiratory droplet size modes arise from the bronchioles representing the lungs and lower respiratory tract, the larynx representing the upper respiratory tract including vocal cords, or the oral cavity. The size distribution of each mode remains largely conserved, although the magnitude of each droplet mode changes as infected individuals breathe, speak, sing, laugh, cough, and sneeze. Here we evaluate how each type of respiratory droplet transits through central ventilation systems and the implications thereof for infectivity of COVID-19. We find that while larger oral droplets can transmit through the air handling systems, their size and concentration are greatly reduced with but few oral droplets leaving the source room. In contrast, the smaller droplets that originate from the bronchioles and larynx are much more effective in transiting through the air handling system into connected rooms. This suggests that the ratio of lower respiratory or deep lung infections may increase relative to upper respiratory infections in rooms connected by central air handling systems. Also, increasing the temperature and humidity in the range considered after the droplets have achieved an “equilibrium” size reduces the probability of infection. [Display omitted] •Bronchiole and larynx droplets readily transit central ventilation systems.•Oral droplets rarely transit central ventilation systems.•HVAC systems reduce risk of upper respiratory infections more than lower ones.•Raising humidity and temperature in air handlers reduces infectivity risk modestly.
doi_str_mv 10.1016/j.icheatmasstransfer.2021.105748
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8576066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735193321006412</els_id><sourcerecordid>S0735193321006412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-19b3d3d4482d28d9980b317bc3b29386926e51c9b61e0cd274e3a361288ea8b33</originalsourceid><addsrcrecordid>eNqNkUtr3DAUhUVooNO0_0Fk1Y2nevghb0rD0DQJgUAmyVbI0nWswSMZSTFMfn01OBRKNlldLufyncs5CH2nZE0JrX_s1lYPoNJexZiCcrGHsGaE0SxXTSlO0IqKpi0IbcQntCINrwracv4ZfYlxRwihgooVGrf2FbCBCZwBl7B1PehkZ5sO2Pd4e3G_LTb-qWB4tgoHiJMNKvlwwCb4aYQUcZwCKIPTEPzL84B1xgQ14jlPO6pkvcPxEBPs41d02qsxwre3eYYeL38_bK6K27s_15uL20KXgqX8ZscNN2VeDBOmbQXpOG06zTvWclG3rIaK6rarKRBtWFMCV7ymTAhQouP8DP1cuNNLtwfz9pGcgt2rcJBeWfm_4uwgn_0sRdXUpK4z4HwB-JisjNom0IP2zuVsJBVlJUqWj34tRzr4GAP0_wwokceO5E6-70geO5JLRxlxsyAgpzHbrGYvcBqMDUcr4-3HYX8B1DOqLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Size dependent infectivity of SARS-CoV-2 via respiratory droplets spread through central ventilation systems</title><source>Elsevier ScienceDirect Journals</source><creator>Pease, Leonard F. ; Salsbury, Timothy I. ; Anderson, Kevin ; Underhill, Ronald M. ; Flaherty, Julia E. ; Vlachokostas, Alex ; Burns, Carolyn A. ; Wang, Na ; Kulkarni, Gourihar ; James, Daniel P.</creator><creatorcontrib>Pease, Leonard F. ; Salsbury, Timothy I. ; Anderson, Kevin ; Underhill, Ronald M. ; Flaherty, Julia E. ; Vlachokostas, Alex ; Burns, Carolyn A. ; Wang, Na ; Kulkarni, Gourihar ; James, Daniel P. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Here we evaluate the transport of respiratory droplets that carry SARS-CoV-2 through central air handling systems in multiroom buildings. Respiratory droplet size modes arise from the bronchioles representing the lungs and lower respiratory tract, the larynx representing the upper respiratory tract including vocal cords, or the oral cavity. The size distribution of each mode remains largely conserved, although the magnitude of each droplet mode changes as infected individuals breathe, speak, sing, laugh, cough, and sneeze. Here we evaluate how each type of respiratory droplet transits through central ventilation systems and the implications thereof for infectivity of COVID-19. We find that while larger oral droplets can transmit through the air handling systems, their size and concentration are greatly reduced with but few oral droplets leaving the source room. In contrast, the smaller droplets that originate from the bronchioles and larynx are much more effective in transiting through the air handling system into connected rooms. This suggests that the ratio of lower respiratory or deep lung infections may increase relative to upper respiratory infections in rooms connected by central air handling systems. Also, increasing the temperature and humidity in the range considered after the droplets have achieved an “equilibrium” size reduces the probability of infection. [Display omitted] •Bronchiole and larynx droplets readily transit central ventilation systems.•Oral droplets rarely transit central ventilation systems.•HVAC systems reduce risk of upper respiratory infections more than lower ones.•Raising humidity and temperature in air handlers reduces infectivity risk modestly.</description><identifier>ISSN: 0735-1933</identifier><identifier>EISSN: 1879-0178</identifier><identifier>EISSN: 0735-1933</identifier><identifier>DOI: 10.1016/j.icheatmasstransfer.2021.105748</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>60 APPLIED LIFE SCIENCES ; Airborne transmission ; COVID-19 ; Healthy buildings ; Indoor air quality ; Multizone buildings ; Well-mixed ; Wells-Riley</subject><ispartof>International communications in heat and mass transfer, 2022-03, Vol.132, p.105748-105748, Article 105748</ispartof><rights>2021 Elsevier Ltd</rights><rights>2021 Elsevier Ltd. All rights reserved. 2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-19b3d3d4482d28d9980b317bc3b29386926e51c9b61e0cd274e3a361288ea8b33</citedby><cites>FETCH-LOGICAL-c482t-19b3d3d4482d28d9980b317bc3b29386926e51c9b61e0cd274e3a361288ea8b33</cites><orcidid>0000000219307243 ; 0000000267308662 ; 0000000180694281 ; 0000000156135893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0735193321006412$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1845842$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pease, Leonard F.</creatorcontrib><creatorcontrib>Salsbury, Timothy I.</creatorcontrib><creatorcontrib>Anderson, Kevin</creatorcontrib><creatorcontrib>Underhill, Ronald M.</creatorcontrib><creatorcontrib>Flaherty, Julia E.</creatorcontrib><creatorcontrib>Vlachokostas, Alex</creatorcontrib><creatorcontrib>Burns, Carolyn A.</creatorcontrib><creatorcontrib>Wang, Na</creatorcontrib><creatorcontrib>Kulkarni, Gourihar</creatorcontrib><creatorcontrib>James, Daniel P.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Size dependent infectivity of SARS-CoV-2 via respiratory droplets spread through central ventilation systems</title><title>International communications in heat and mass transfer</title><description>Here we evaluate the transport of respiratory droplets that carry SARS-CoV-2 through central air handling systems in multiroom buildings. Respiratory droplet size modes arise from the bronchioles representing the lungs and lower respiratory tract, the larynx representing the upper respiratory tract including vocal cords, or the oral cavity. The size distribution of each mode remains largely conserved, although the magnitude of each droplet mode changes as infected individuals breathe, speak, sing, laugh, cough, and sneeze. Here we evaluate how each type of respiratory droplet transits through central ventilation systems and the implications thereof for infectivity of COVID-19. We find that while larger oral droplets can transmit through the air handling systems, their size and concentration are greatly reduced with but few oral droplets leaving the source room. In contrast, the smaller droplets that originate from the bronchioles and larynx are much more effective in transiting through the air handling system into connected rooms. This suggests that the ratio of lower respiratory or deep lung infections may increase relative to upper respiratory infections in rooms connected by central air handling systems. Also, increasing the temperature and humidity in the range considered after the droplets have achieved an “equilibrium” size reduces the probability of infection. [Display omitted] •Bronchiole and larynx droplets readily transit central ventilation systems.•Oral droplets rarely transit central ventilation systems.•HVAC systems reduce risk of upper respiratory infections more than lower ones.•Raising humidity and temperature in air handlers reduces infectivity risk modestly.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Airborne transmission</subject><subject>COVID-19</subject><subject>Healthy buildings</subject><subject>Indoor air quality</subject><subject>Multizone buildings</subject><subject>Well-mixed</subject><subject>Wells-Riley</subject><issn>0735-1933</issn><issn>1879-0178</issn><issn>0735-1933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkUtr3DAUhUVooNO0_0Fk1Y2nevghb0rD0DQJgUAmyVbI0nWswSMZSTFMfn01OBRKNlldLufyncs5CH2nZE0JrX_s1lYPoNJexZiCcrGHsGaE0SxXTSlO0IqKpi0IbcQntCINrwracv4ZfYlxRwihgooVGrf2FbCBCZwBl7B1PehkZ5sO2Pd4e3G_LTb-qWB4tgoHiJMNKvlwwCb4aYQUcZwCKIPTEPzL84B1xgQ14jlPO6pkvcPxEBPs41d02qsxwre3eYYeL38_bK6K27s_15uL20KXgqX8ZscNN2VeDBOmbQXpOG06zTvWclG3rIaK6rarKRBtWFMCV7ymTAhQouP8DP1cuNNLtwfz9pGcgt2rcJBeWfm_4uwgn_0sRdXUpK4z4HwB-JisjNom0IP2zuVsJBVlJUqWj34tRzr4GAP0_wwokceO5E6-70geO5JLRxlxsyAgpzHbrGYvcBqMDUcr4-3HYX8B1DOqLg</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Pease, Leonard F.</creator><creator>Salsbury, Timothy I.</creator><creator>Anderson, Kevin</creator><creator>Underhill, Ronald M.</creator><creator>Flaherty, Julia E.</creator><creator>Vlachokostas, Alex</creator><creator>Burns, Carolyn A.</creator><creator>Wang, Na</creator><creator>Kulkarni, Gourihar</creator><creator>James, Daniel P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000000219307243</orcidid><orcidid>https://orcid.org/0000000267308662</orcidid><orcidid>https://orcid.org/0000000180694281</orcidid><orcidid>https://orcid.org/0000000156135893</orcidid></search><sort><creationdate>20220301</creationdate><title>Size dependent infectivity of SARS-CoV-2 via respiratory droplets spread through central ventilation systems</title><author>Pease, Leonard F. ; Salsbury, Timothy I. ; Anderson, Kevin ; Underhill, Ronald M. ; Flaherty, Julia E. ; Vlachokostas, Alex ; Burns, Carolyn A. ; Wang, Na ; Kulkarni, Gourihar ; James, Daniel P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-19b3d3d4482d28d9980b317bc3b29386926e51c9b61e0cd274e3a361288ea8b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Airborne transmission</topic><topic>COVID-19</topic><topic>Healthy buildings</topic><topic>Indoor air quality</topic><topic>Multizone buildings</topic><topic>Well-mixed</topic><topic>Wells-Riley</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pease, Leonard F.</creatorcontrib><creatorcontrib>Salsbury, Timothy I.</creatorcontrib><creatorcontrib>Anderson, Kevin</creatorcontrib><creatorcontrib>Underhill, Ronald M.</creatorcontrib><creatorcontrib>Flaherty, Julia E.</creatorcontrib><creatorcontrib>Vlachokostas, Alex</creatorcontrib><creatorcontrib>Burns, Carolyn A.</creatorcontrib><creatorcontrib>Wang, Na</creatorcontrib><creatorcontrib>Kulkarni, Gourihar</creatorcontrib><creatorcontrib>James, Daniel P.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International communications in heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pease, Leonard F.</au><au>Salsbury, Timothy I.</au><au>Anderson, Kevin</au><au>Underhill, Ronald M.</au><au>Flaherty, Julia E.</au><au>Vlachokostas, Alex</au><au>Burns, Carolyn A.</au><au>Wang, Na</au><au>Kulkarni, Gourihar</au><au>James, Daniel P.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size dependent infectivity of SARS-CoV-2 via respiratory droplets spread through central ventilation systems</atitle><jtitle>International communications in heat and mass transfer</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>132</volume><spage>105748</spage><epage>105748</epage><pages>105748-105748</pages><artnum>105748</artnum><issn>0735-1933</issn><eissn>1879-0178</eissn><eissn>0735-1933</eissn><abstract>Here we evaluate the transport of respiratory droplets that carry SARS-CoV-2 through central air handling systems in multiroom buildings. Respiratory droplet size modes arise from the bronchioles representing the lungs and lower respiratory tract, the larynx representing the upper respiratory tract including vocal cords, or the oral cavity. The size distribution of each mode remains largely conserved, although the magnitude of each droplet mode changes as infected individuals breathe, speak, sing, laugh, cough, and sneeze. Here we evaluate how each type of respiratory droplet transits through central ventilation systems and the implications thereof for infectivity of COVID-19. We find that while larger oral droplets can transmit through the air handling systems, their size and concentration are greatly reduced with but few oral droplets leaving the source room. In contrast, the smaller droplets that originate from the bronchioles and larynx are much more effective in transiting through the air handling system into connected rooms. This suggests that the ratio of lower respiratory or deep lung infections may increase relative to upper respiratory infections in rooms connected by central air handling systems. Also, increasing the temperature and humidity in the range considered after the droplets have achieved an “equilibrium” size reduces the probability of infection. [Display omitted] •Bronchiole and larynx droplets readily transit central ventilation systems.•Oral droplets rarely transit central ventilation systems.•HVAC systems reduce risk of upper respiratory infections more than lower ones.•Raising humidity and temperature in air handlers reduces infectivity risk modestly.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.icheatmasstransfer.2021.105748</doi><tpages>1</tpages><orcidid>https://orcid.org/0000000219307243</orcidid><orcidid>https://orcid.org/0000000267308662</orcidid><orcidid>https://orcid.org/0000000180694281</orcidid><orcidid>https://orcid.org/0000000156135893</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0735-1933
ispartof International communications in heat and mass transfer, 2022-03, Vol.132, p.105748-105748, Article 105748
issn 0735-1933
1879-0178
0735-1933
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8576066
source Elsevier ScienceDirect Journals
subjects 60 APPLIED LIFE SCIENCES
Airborne transmission
COVID-19
Healthy buildings
Indoor air quality
Multizone buildings
Well-mixed
Wells-Riley
title Size dependent infectivity of SARS-CoV-2 via respiratory droplets spread through central ventilation systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20dependent%20infectivity%20of%20SARS-CoV-2%20via%20respiratory%20droplets%20spread%20through%20central%20ventilation%20systems&rft.jtitle=International%20communications%20in%20heat%20and%20mass%20transfer&rft.au=Pease,%20Leonard%20F.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2022-03-01&rft.volume=132&rft.spage=105748&rft.epage=105748&rft.pages=105748-105748&rft.artnum=105748&rft.issn=0735-1933&rft.eissn=1879-0178&rft_id=info:doi/10.1016/j.icheatmasstransfer.2021.105748&rft_dat=%3Celsevier_pubme%3ES0735193321006412%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0735193321006412&rfr_iscdi=true