Size dependent infectivity of SARS-CoV-2 via respiratory droplets spread through central ventilation systems

Here we evaluate the transport of respiratory droplets that carry SARS-CoV-2 through central air handling systems in multiroom buildings. Respiratory droplet size modes arise from the bronchioles representing the lungs and lower respiratory tract, the larynx representing the upper respiratory tract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International communications in heat and mass transfer 2022-03, Vol.132, p.105748-105748, Article 105748
Hauptverfasser: Pease, Leonard F., Salsbury, Timothy I., Anderson, Kevin, Underhill, Ronald M., Flaherty, Julia E., Vlachokostas, Alex, Burns, Carolyn A., Wang, Na, Kulkarni, Gourihar, James, Daniel P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here we evaluate the transport of respiratory droplets that carry SARS-CoV-2 through central air handling systems in multiroom buildings. Respiratory droplet size modes arise from the bronchioles representing the lungs and lower respiratory tract, the larynx representing the upper respiratory tract including vocal cords, or the oral cavity. The size distribution of each mode remains largely conserved, although the magnitude of each droplet mode changes as infected individuals breathe, speak, sing, laugh, cough, and sneeze. Here we evaluate how each type of respiratory droplet transits through central ventilation systems and the implications thereof for infectivity of COVID-19. We find that while larger oral droplets can transmit through the air handling systems, their size and concentration are greatly reduced with but few oral droplets leaving the source room. In contrast, the smaller droplets that originate from the bronchioles and larynx are much more effective in transiting through the air handling system into connected rooms. This suggests that the ratio of lower respiratory or deep lung infections may increase relative to upper respiratory infections in rooms connected by central air handling systems. Also, increasing the temperature and humidity in the range considered after the droplets have achieved an “equilibrium” size reduces the probability of infection. [Display omitted] •Bronchiole and larynx droplets readily transit central ventilation systems.•Oral droplets rarely transit central ventilation systems.•HVAC systems reduce risk of upper respiratory infections more than lower ones.•Raising humidity and temperature in air handlers reduces infectivity risk modestly.
ISSN:0735-1933
1879-0178
0735-1933
DOI:10.1016/j.icheatmasstransfer.2021.105748