Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research

Abstract Single-cell RNA sequencing (scRNA-seq) revolutionized our understanding of disease biology. The promise it presents to also transform translational research requires highly standardized and robust software workflows. Here, we present the toolkit Besca, which streamlines scRNA-seq analyses a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NAR Genomics and Bioinformatics 2021-12, Vol.3 (4)
Hauptverfasser: Mädler, Sophia Clara, Julien-Laferriere, Alice, Wyss, Luis, Phan, Miroslav, Sonrel, Anthony, Kang, Albert S W, Ulrich, Eric, Schmucki, Roland, Zhang, Jitao David, Ebeling, Martin, Badi, Laura, Kam-Thong, Tony, Schwalie, Petra C, Hatje, Klas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Single-cell RNA sequencing (scRNA-seq) revolutionized our understanding of disease biology. The promise it presents to also transform translational research requires highly standardized and robust software workflows. Here, we present the toolkit Besca, which streamlines scRNA-seq analyses and their use to deconvolute bulk RNA-seq data according to current best practices. Beyond a standard workflow covering quality control, filtering, and clustering, two complementary Besca modules, utilizing hierarchical cell signatures and supervised machine learning, automate cell annotation and provide harmonized nomenclatures. Subsequently, the gene expression profiles can be employed to estimate cell type proportions in bulk transcriptomics data. Using multiple, diverse scRNA-seq datasets, some stemming from highly heterogeneous tumor tissue, we show how Besca aids acceleration, interoperability, reusability and interpretability of scRNA-seq data analyses, meeting crucial demands in translational research and beyond.
ISSN:2631-9268
2631-9268
DOI:10.1093/nargab/lqab102