Modulation of tactile feedback for the execution of dexterous movement

Although dexterity relies on the constant transmission of sensory information, unchecked feedback can be disruptive. Yet how somatosensory feedback from the hands is regulated and whether this modulation influences movement remain unclear. We found that mouse tactile afferents recruit neurons in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2021-10, Vol.374 (6565), p.316-323
Hauptverfasser: Conner, James M, Bohannon, Andrew, Igarashi, Masakazu, Taniguchi, James, Baltar, Nicholas, Azim, Eiman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although dexterity relies on the constant transmission of sensory information, unchecked feedback can be disruptive. Yet how somatosensory feedback from the hands is regulated and whether this modulation influences movement remain unclear. We found that mouse tactile afferents recruit neurons in the brainstem cuneate nucleus, whose activity is modulated by distinct classes of local inhibitory neurons. Manipulation of these inhibitory circuits suppresses or enhances the transmission of tactile information, which affects manual behaviors. Top-down cortical pathways innervate cuneate in a complementary pattern, with somatosensory cortical neurons targeting the core tactile region of cuneate and a large rostral cortical population driving feed-forward inhibition of tactile transmission through an inhibitory shell. These findings identify a circuit basis for tactile feedback modulation that enables the effective execution of dexterous movement.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.abh1123