Cannabidiol converts NF-κB into a tumor suppressor in glioblastoma with defined antioxidative properties

Abstract Background The transcription factor NF-κB drives neoplastic progression of many cancers including primary brain tumors (glioblastoma [GBM]). Precise therapeutic modulation of NF-κB activity can suppress central oncogenic signaling pathways in GBM, but clinically applicable compounds to achi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuro-oncology (Charlottesville, Va.) Va.), 2021-11, Vol.23 (11), p.1898-1910
Hauptverfasser: Volmar, Marie N M, Cheng, Jiying, Alenezi, Haitham, Richter, Sven, Haug, Alisha, Hassan, Zonera, Goldberg, Maria, Li, Yuping, Hou, Mengzhuo, Herold-Mende, Christel, Maire, Cecile L, Lamszus, Katrin, Flüh, Charlotte, Held-Feindt, Janka, Gargiulo, Gaetano, Topping, Geoffrey J, Schilling, Franz, Saur, Dieter, Schneider, Günter, Synowitz, Michael, Schick, Joel A, Kälin, Roland E, Glass, Rainer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background The transcription factor NF-κB drives neoplastic progression of many cancers including primary brain tumors (glioblastoma [GBM]). Precise therapeutic modulation of NF-κB activity can suppress central oncogenic signaling pathways in GBM, but clinically applicable compounds to achieve this goal have remained elusive. Methods In a pharmacogenomics study with a panel of transgenic glioma cells, we observed that NF-κB can be converted into a tumor suppressor by the non-psychotropic cannabinoid cannabidiol (CBD). Subsequently, we investigated the anti-tumor effects of CBD, which is used as an anticonvulsive drug (Epidiolex) in pediatric neurology, in a larger set of human primary GBM stem-like cells (hGSC). For this study, we performed pharmacological assays, gene expression profiling, biochemical, and cell-biological experiments. We validated our findings using orthotopic in vivo models and bioinformatics analysis of human GBM datasets. Results We found that CBD promotes DNA binding of the NF-κB subunit RELA and simultaneously prevents RELA phosphorylation on serine-311, a key residue that permits genetic transactivation. Strikingly, sustained DNA binding by RELA-lacking phospho-serine 311 was found to mediate hGSC cytotoxicity. Widespread sensitivity to CBD was observed in a cohort of hGSC defined by low levels of reactive oxygen species (ROS), while high ROS content in other tumors blocked CBD-induced hGSC death. Consequently, ROS levels served as a predictive biomarker for CBD-sensitive tumors. Conclusions This evidence demonstrates how a clinically approved drug can convert NF-κB into a tumor suppressor and suggests a promising repurposing option for GBM therapy.
ISSN:1522-8517
1523-5866
DOI:10.1093/neuonc/noab095