Effects of Slope Aspect and Rainfall on Belowground Deep Fine Root Traits and Aboveground Tree Height

The vertical root distribution and rooting depth are the main belowground plant functional traits used to indicate drought resistance in arid and semiarid regions. The effects of the slope aspect on the aboveground traits are visible but not the belowground deep root traits. We aimed to investigate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in plant science 2021-10, Vol.12, p.684468-684468, Article 684468
Hauptverfasser: Lihui, Ma, Xiaoli, Liu, Jie, Chai, Youke, Wang, Jingui, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The vertical root distribution and rooting depth are the main belowground plant functional traits used to indicate drought resistance in arid and semiarid regions. The effects of the slope aspect on the aboveground traits are visible but not the belowground deep root traits. We aimed to investigate the fine root traits of the locust tree (Robinia pseudoacacia L.) planted on southerly and northerly aspects, and the variations in the rooting depth in regions with different rainfall, as well as assessing how deep rooting, might affect the response to drought in a loess region. We selected three study sites with different rainfall amounts, with six sampling plots at each site (three each with southerly and northerly aspects). Soil core samples were collected down to the depth where no roots were present. The locust trees tended to develop deeper fine roots rather than greater heights. The tree height and diameter were greater for locust trees on northerly aspects, whereas trees on southerly aspects had significantly deeper rooting depths. Fine root traits (root length, root area, and root dry weight density) were higher in the southerly aspect for both Changwu and Ansai, but lower in Suide. The ratio of the root front depth tree height ranged from 1.04 to 3.17, which was higher on southerly than northerly aspects, and it increased as the rainfall decreased. Locust tree growth traits (belowground fine root and aboveground tree height) were positively correlated with the mean annual rainfall. The soil moisture content of the topsoil decreased as the rainfall decreased, but the pattern varied in the deep layer. Our results suggest that the variations in the belowground rooting depth under different slope aspects may be related to plant survival strategies. The vertical extension of the rooting depth and tree height may be key functional traits that determine plant growth in drought-prone regions.
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2021.684468