Ferroptosis Mediated by Lipid Reactive Oxygen Species: A Possible Causal Link of Neuroinflammation to Neurological Disorders

Increasing evidence indicates a possible causal link between neuroinflammation and neurological disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and stroke. A putative mechanism underlying such a link can be explained by ferroptosis. Current studies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oxidative medicine and cellular longevity 2021, Vol.2021 (1), p.5005136
Hauptverfasser: Cheng, Ying, Song, Yiting, Chen, Huan, Li, Qianqian, Gao, Yuan, Lu, Guanchao, Luo, Chengliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increasing evidence indicates a possible causal link between neuroinflammation and neurological disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and stroke. A putative mechanism underlying such a link can be explained by ferroptosis. Current studies have shown that disturbances of iron homeostasis, glutamate excitatory toxicity, lipid reactive oxygen species (ROS), and other manifestations related to ferroptosis can be detected in several neurological disorders caused by neuroinflammation. To date, compelling evidence indicates that damage-associated molecular pattern (DAMP) molecules (e.g., ROS) produced in the process of ferroptosis activate glial cells by activating neuroimmune pathways and then produce a series of inflammatory factors which contribute to neurological disorders. Our review article provides a current view of the involvement of ferroptosis or ROS in the pathological process of neuroinflammation, the effects of neuroinflammation mediated by ferroptosis in neurological disorders, a better understanding of the mechanisms underlying ferroptosis participates in neuroinflammation, and the potential treatments for neurological disorders. In addition, further research on the mechanisms of ferroptosis as well as the link between ferroptosis and neuroinflammation will help provide new targets for treatment.
ISSN:1942-0900
1942-0994
DOI:10.1155/2021/5005136