Functional Studies of α‑Riboside Activation by the α‑Ribazole Kinase (CblS) from Geobacillus kaustophilus

We report the initial characterization of the α-ribazole (α-R) kinase enzyme of Geobacillus kaustophilus (GkCblS), which converts α-R to α-R-phosphate (α-RP) during the synthesis of cobamides. We implemented a continuous spectrophotometric assay to obtain kinetic parameters for several potential sub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2021-06, Vol.60 (25), p.2011-2021
Hauptverfasser: Mattes, Theodoric A, Malalasekara, Lahiru, Escalante-Semerena, Jorge C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the initial characterization of the α-ribazole (α-R) kinase enzyme of Geobacillus kaustophilus (GkCblS), which converts α-R to α-R-phosphate (α-RP) during the synthesis of cobamides. We implemented a continuous spectrophotometric assay to obtain kinetic parameters for several potential substrates and to study the specificity of the enzyme for α-N-linked ribosides. The apparent K m values for α-R and ATP were 358 and 297 μM, respectively. We also report methods for synthesizing and quantifying non-commercially available α-ribosides and β-ribazole (β-R). Purified GkCblS activated α-R and other α-ribosides, including α-adenosine (α-Ado). GkCblS did not phosphorylate β-N-linked glycosides like β-adenosine or β-R. Expression of G. kaustophilus cblS + in a Salmonella enterica subsp. enterica sv Typhimurium LT2 (S. enterica) strain lacking the nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyl transferase (CobT) enzyme resulted in the activation of various benzimidazole α-ribosides, and the synthesis of benzimidazolyl cobamides to levels that supported robust growth. Notably, α-Ado did not support growth under similar conditions, in spite of the fact that GkCblS phosphorylated α-Ado in vitro. When α-Ado was provided at a very high concentration, growth was observed. This result suggested that in S. enterica α-Ado transport may be inefficient. We conclude that GkCblS has specificity for α-N-glycosidic bonds, but not for the base in α-ribosides.
ISSN:0006-2960
1520-4995
DOI:10.1021/acs.biochem.1c00119