Milling as a route to porous graphitic carbons from biomass

This paper reports a simple way to produce porous graphitic carbons from a wide range of lignocellulosic biomass sources, including nut shells, softwood sawdust, seed husks and bamboo. Biomass precursors are milled and sieved to produce fine powders and are then converted to porous graphitic carbons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2021-11, Vol.379 (2209), p.20200336-20200336
Hauptverfasser: Hunter, R D, Davies, J, Hérou, S J A, Kulak, A, Schnepp, Z
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reports a simple way to produce porous graphitic carbons from a wide range of lignocellulosic biomass sources, including nut shells, softwood sawdust, seed husks and bamboo. Biomass precursors are milled and sieved to produce fine powders and are then converted to porous graphitic carbons by iron-catalysed graphitization. Graphitizing the raw (unmilled) biomass creates carbons that are diverse in their porosity and adsorption properties. This is due to the inability of the iron catalyst precursor to penetrate the structure of dense biomass material. Milling enables much more efficient impregnation of the biomass and produces carbons with homogeneous properties. Lignocellulosic biomass (particularly waste biomass) is an attractive precursor to technologically important porous graphitic carbons as it is abundant and renewable. This simple method for preparing the biomass enables a wide range of biomass sources to be used to produce carbons with homogeneous properties. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.
ISSN:1364-503X
1471-2962
DOI:10.1098/rsta.2020.0336