Developing a system for in vivo imaging of maize roots containing iodinated contrast media in soil using synchrotron XCT and XRF

Aims We sought to develop a novel experimental system which enabled application of iodinated contrast media to in vivo plant roots intact in soil and was compatible with time-resolved synchrotron X-ray computed tomography imaging. The system was developed to overcome issues of low contrast to noise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant and soil 2021-03, Vol.460 (1/2), p.647-665
Hauptverfasser: Scotson, Callum P., van Veelen, Arjen, Williams, Katherine A., Koebernick, Nicolai, Fletcher, Dan McKay, Roose, Tiina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aims We sought to develop a novel experimental system which enabled application of iodinated contrast media to in vivo plant roots intact in soil and was compatible with time-resolved synchrotron X-ray computed tomography imaging. The system was developed to overcome issues of low contrast to noise within X-ray computed tomography images of plant roots and soil environments, the latter of which can complicate image processing and result in the loss of anatomical information. Methods To demonstrate the efficacy of the system we employ the novel use of both synchrotron X-ray computed tomography and synchrotron X-ray fluorescence mapping to capture the translocation of the contrast media through root vasculature into the leaves. Results With the application of contrast media we identify fluid flow in root vasculature and visualise anatomical features, which are otherwise often only observable in ex vivo microscopy, including: the xylem, metaxylem, pith, fibres in aerenchyma and leaf venation. We are also able to observe interactions between aerenchyma cross sectional area and solute transport in the root vasculature with depth. Conclusions Our novel system was capable of successfully delivering sufficient contrast media into root and leaf tissues such that anatomical features could be visualised and internal fluid transport observed. We propose that our system could be used in future to study internal plant transport mechanisms and parameterise models for fluid flow in plants.
ISSN:0032-079X
1573-5036
DOI:10.1007/s11104-020-04784-x