Risk of herbivory negatively correlates with the diversity of volatile emissions involved in plant communication
Plant-to-plant volatile-mediated communication and subsequent induced resistance to insect herbivores is common. Less clear is the adaptive significance of these interactions; what selective mechanisms favour plant communication and what conditions allow individuals to benefit by both emitting and r...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2021-10, Vol.288 (1961), p.1-7 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Plant-to-plant volatile-mediated communication and subsequent induced resistance to insect herbivores is common. Less clear is the adaptive significance of these interactions; what selective mechanisms favour plant communication and what conditions allow individuals to benefit by both emitting and responding to cues? We explored the predictions of two non-exclusive hypotheses to explain why plants might emit cues, the kin selection hypothesis (KSH) and the mutual benefit hypothesis (MBH). We examined 15 populations of sagebrush that experience a range of naturally occurring herbivory along a 300 km latitudinal transect. As predicted by the KSH, we found several uncommon chemotypes with some chemotypes occurring only within a single population. Consistent with the MBH, chemotypic diversity was negatively correlated with herbivore pressure; sites with higher levels of herbivory were associated with a few common cues broadly recognized by most individuals. These cues varied among different populations. Our results are similar to those reported for anti-predator signalling in vertebrates. |
---|---|
ISSN: | 0962-8452 1471-2954 |
DOI: | 10.1098/rspb.2021.1790 |