From Hume to Wuhan: An Epistemological Journey on the Problem of Induction in COVID-19 Machine Learning Models and its Impact Upon Medical Research

Advances in computer science have transformed the way artificial intelligence is employed in academia, with Machine Learning (ML) methods easily available to researchers from diverse areas thanks to intuitive frameworks that yield extraordinary results. Notwithstanding, current trends in the mainstr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021-01, Vol.9, p.97243-97250
1. Verfasser: Vega, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advances in computer science have transformed the way artificial intelligence is employed in academia, with Machine Learning (ML) methods easily available to researchers from diverse areas thanks to intuitive frameworks that yield extraordinary results. Notwithstanding, current trends in the mainstream ML community tend to emphasise wins over knowledge, putting the scientific method aside, and focusing on maximising metrics of interest. Methodological flaws lead to poor justification of method choice, which in turn leads to disregard the limitations of the methods employed, ultimately putting at risk the translation of solutions into real-world clinical settings. This work exemplifies the impact of the problem of induction in medical research, studying the methodological issues of recent solutions for computer-aided diagnosis of COVID-19 from chest X-Ray images.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3095222