Enabling Privacy-Assured Fog-Based Data Aggregation in E-Healthcare Systems
Wearable body area network is a key component of the modern-day e-healthcare system (e.g., telemedicine), particularly as the number and types of wearable medical monitoring systems increase. The importance of such systems is reinforced in the current COVID-19 pandemic. In addition to the need for a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2021-03, Vol.17 (3), p.1948-1957 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1957 |
---|---|
container_issue | 3 |
container_start_page | 1948 |
container_title | IEEE transactions on industrial informatics |
container_volume | 17 |
creator | Guo, Cheng Tian, Pengxu Choo, Kim-Kwang Raymond |
description | Wearable body area network is a key component of the modern-day e-healthcare system (e.g., telemedicine), particularly as the number and types of wearable medical monitoring systems increase. The importance of such systems is reinforced in the current COVID-19 pandemic. In addition to the need for a secure collection of medical data, there is also a need to process data in real-time. In this article, we design an improved symmetric homomorphic cryptosystem and a fog-based communication architecture to support delay- or time-sensitive monitoring and other-related applications. Specifically, medical data can be analyzed at the fog servers in a secure manner. This will facilitate decision making, for example, allowing relevant stakeholders to detect and respond to emergency situations, based on real-time data analysis. We present two attack games to demonstrate that our approach is secure (i.e., chosen-plaintext attack resilience under the computational Diffie-Hellman assumption), and evaluate the complexity of its computations. A comparative summary of its performance and three other related approaches suggests that our approach enables privacy-assured medical data aggregation, and the simulation experiments using Microsoft Azure further demonstrate the utility of our scheme. |
doi_str_mv | 10.1109/TII.2020.2995228 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8545020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9096587</ieee_id><sourcerecordid>2892011192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-b7f6622d987e34e9ec816a792a4f413ecc8c33a7582c5d2a4c803734e1675a953</originalsourceid><addsrcrecordid>eNpdkU1Lw0AQhoMoWKt3wUvAi5fU_cgmuxeh1tYWCwrW8zLdTtMtaVJ3k0L_vVtaBD3NMPPMy8y8UXRLSY9Soh5nk0mPEUZ6TCnBmDyLOlSlNCFEkPOQC0ETzgi_jK68XxPCc8JVJ3obVjAvbVXEH87uwOyTvvetw0U8qovkGXzIXqCBuF8UDgtobF3FtoqHyRihbFYGHMafe9_gxl9HF0soPd6cYjf6Gg1ng3EyfX-dDPrTxKSMNsk8X2YZYwslc-QpKjSSZpArBukypRyNkYZzyIVkRixC1ciwbSBplgtQgnejp6Putp1vcGGwahyUeuvsBtxe12D1305lV7qod1qKVIQXBYGHk4Crv1v0jd5Yb7AsocK69ZpJxQilVLGA3v9D13XrqnCeZmkm8yyVXAWKHCnjau8dLn-XoUQf7NHBHn2wR5_sCSN3xxGLiL-4IioTMuc_0JeKmw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468764839</pqid></control><display><type>article</type><title>Enabling Privacy-Assured Fog-Based Data Aggregation in E-Healthcare Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Guo, Cheng ; Tian, Pengxu ; Choo, Kim-Kwang Raymond</creator><creatorcontrib>Guo, Cheng ; Tian, Pengxu ; Choo, Kim-Kwang Raymond</creatorcontrib><description>Wearable body area network is a key component of the modern-day e-healthcare system (e.g., telemedicine), particularly as the number and types of wearable medical monitoring systems increase. The importance of such systems is reinforced in the current COVID-19 pandemic. In addition to the need for a secure collection of medical data, there is also a need to process data in real-time. In this article, we design an improved symmetric homomorphic cryptosystem and a fog-based communication architecture to support delay- or time-sensitive monitoring and other-related applications. Specifically, medical data can be analyzed at the fog servers in a secure manner. This will facilitate decision making, for example, allowing relevant stakeholders to detect and respond to emergency situations, based on real-time data analysis. We present two attack games to demonstrate that our approach is secure (i.e., chosen-plaintext attack resilience under the computational Diffie-Hellman assumption), and evaluate the complexity of its computations. A comparative summary of its performance and three other related approaches suggests that our approach enables privacy-assured medical data aggregation, and the simulation experiments using Microsoft Azure further demonstrate the utility of our scheme.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2020.2995228</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agglomeration ; Body area networks ; COVID-19 ; Data aggregation ; Data analysis ; Data management ; Decision making ; e-healthcare ; Emergency response ; Encryption ; fog-based healthcare ; Health care ; Medical diagnostic imaging ; Monitoring ; Privacy ; privacy-preserving ; Real time ; Servers ; Telemedicine ; Wearable technology ; wireless body area network (WBAN)</subject><ispartof>IEEE transactions on industrial informatics, 2021-03, Vol.17 (3), p.1948-1957</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>IEEE 2020. IEEE</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-b7f6622d987e34e9ec816a792a4f413ecc8c33a7582c5d2a4c803734e1675a953</citedby><cites>FETCH-LOGICAL-c421t-b7f6622d987e34e9ec816a792a4f413ecc8c33a7582c5d2a4c803734e1675a953</cites><orcidid>0000-0001-9208-5336 ; 0000-0001-7489-7381 ; 0000-0001-5681-7288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9096587$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9096587$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo, Cheng</creatorcontrib><creatorcontrib>Tian, Pengxu</creatorcontrib><creatorcontrib>Choo, Kim-Kwang Raymond</creatorcontrib><title>Enabling Privacy-Assured Fog-Based Data Aggregation in E-Healthcare Systems</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Wearable body area network is a key component of the modern-day e-healthcare system (e.g., telemedicine), particularly as the number and types of wearable medical monitoring systems increase. The importance of such systems is reinforced in the current COVID-19 pandemic. In addition to the need for a secure collection of medical data, there is also a need to process data in real-time. In this article, we design an improved symmetric homomorphic cryptosystem and a fog-based communication architecture to support delay- or time-sensitive monitoring and other-related applications. Specifically, medical data can be analyzed at the fog servers in a secure manner. This will facilitate decision making, for example, allowing relevant stakeholders to detect and respond to emergency situations, based on real-time data analysis. We present two attack games to demonstrate that our approach is secure (i.e., chosen-plaintext attack resilience under the computational Diffie-Hellman assumption), and evaluate the complexity of its computations. A comparative summary of its performance and three other related approaches suggests that our approach enables privacy-assured medical data aggregation, and the simulation experiments using Microsoft Azure further demonstrate the utility of our scheme.</description><subject>Agglomeration</subject><subject>Body area networks</subject><subject>COVID-19</subject><subject>Data aggregation</subject><subject>Data analysis</subject><subject>Data management</subject><subject>Decision making</subject><subject>e-healthcare</subject><subject>Emergency response</subject><subject>Encryption</subject><subject>fog-based healthcare</subject><subject>Health care</subject><subject>Medical diagnostic imaging</subject><subject>Monitoring</subject><subject>Privacy</subject><subject>privacy-preserving</subject><subject>Real time</subject><subject>Servers</subject><subject>Telemedicine</subject><subject>Wearable technology</subject><subject>wireless body area network (WBAN)</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1Lw0AQhoMoWKt3wUvAi5fU_cgmuxeh1tYWCwrW8zLdTtMtaVJ3k0L_vVtaBD3NMPPMy8y8UXRLSY9Soh5nk0mPEUZ6TCnBmDyLOlSlNCFEkPOQC0ETzgi_jK68XxPCc8JVJ3obVjAvbVXEH87uwOyTvvetw0U8qovkGXzIXqCBuF8UDgtobF3FtoqHyRihbFYGHMafe9_gxl9HF0soPd6cYjf6Gg1ng3EyfX-dDPrTxKSMNsk8X2YZYwslc-QpKjSSZpArBukypRyNkYZzyIVkRixC1ciwbSBplgtQgnejp6Putp1vcGGwahyUeuvsBtxe12D1305lV7qod1qKVIQXBYGHk4Crv1v0jd5Yb7AsocK69ZpJxQilVLGA3v9D13XrqnCeZmkm8yyVXAWKHCnjau8dLn-XoUQf7NHBHn2wR5_sCSN3xxGLiL-4IioTMuc_0JeKmw</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Guo, Cheng</creator><creator>Tian, Pengxu</creator><creator>Choo, Kim-Kwang Raymond</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9208-5336</orcidid><orcidid>https://orcid.org/0000-0001-7489-7381</orcidid><orcidid>https://orcid.org/0000-0001-5681-7288</orcidid></search><sort><creationdate>20210301</creationdate><title>Enabling Privacy-Assured Fog-Based Data Aggregation in E-Healthcare Systems</title><author>Guo, Cheng ; Tian, Pengxu ; Choo, Kim-Kwang Raymond</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-b7f6622d987e34e9ec816a792a4f413ecc8c33a7582c5d2a4c803734e1675a953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agglomeration</topic><topic>Body area networks</topic><topic>COVID-19</topic><topic>Data aggregation</topic><topic>Data analysis</topic><topic>Data management</topic><topic>Decision making</topic><topic>e-healthcare</topic><topic>Emergency response</topic><topic>Encryption</topic><topic>fog-based healthcare</topic><topic>Health care</topic><topic>Medical diagnostic imaging</topic><topic>Monitoring</topic><topic>Privacy</topic><topic>privacy-preserving</topic><topic>Real time</topic><topic>Servers</topic><topic>Telemedicine</topic><topic>Wearable technology</topic><topic>wireless body area network (WBAN)</topic><toplevel>online_resources</toplevel><creatorcontrib>Guo, Cheng</creatorcontrib><creatorcontrib>Tian, Pengxu</creatorcontrib><creatorcontrib>Choo, Kim-Kwang Raymond</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Cheng</au><au>Tian, Pengxu</au><au>Choo, Kim-Kwang Raymond</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling Privacy-Assured Fog-Based Data Aggregation in E-Healthcare Systems</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>17</volume><issue>3</issue><spage>1948</spage><epage>1957</epage><pages>1948-1957</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Wearable body area network is a key component of the modern-day e-healthcare system (e.g., telemedicine), particularly as the number and types of wearable medical monitoring systems increase. The importance of such systems is reinforced in the current COVID-19 pandemic. In addition to the need for a secure collection of medical data, there is also a need to process data in real-time. In this article, we design an improved symmetric homomorphic cryptosystem and a fog-based communication architecture to support delay- or time-sensitive monitoring and other-related applications. Specifically, medical data can be analyzed at the fog servers in a secure manner. This will facilitate decision making, for example, allowing relevant stakeholders to detect and respond to emergency situations, based on real-time data analysis. We present two attack games to demonstrate that our approach is secure (i.e., chosen-plaintext attack resilience under the computational Diffie-Hellman assumption), and evaluate the complexity of its computations. A comparative summary of its performance and three other related approaches suggests that our approach enables privacy-assured medical data aggregation, and the simulation experiments using Microsoft Azure further demonstrate the utility of our scheme.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2020.2995228</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9208-5336</orcidid><orcidid>https://orcid.org/0000-0001-7489-7381</orcidid><orcidid>https://orcid.org/0000-0001-5681-7288</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2021-03, Vol.17 (3), p.1948-1957 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8545020 |
source | IEEE Electronic Library (IEL) |
subjects | Agglomeration Body area networks COVID-19 Data aggregation Data analysis Data management Decision making e-healthcare Emergency response Encryption fog-based healthcare Health care Medical diagnostic imaging Monitoring Privacy privacy-preserving Real time Servers Telemedicine Wearable technology wireless body area network (WBAN) |
title | Enabling Privacy-Assured Fog-Based Data Aggregation in E-Healthcare Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20Privacy-Assured%20Fog-Based%20Data%20Aggregation%20in%20E-Healthcare%20Systems&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Guo,%20Cheng&rft.date=2021-03-01&rft.volume=17&rft.issue=3&rft.spage=1948&rft.epage=1957&rft.pages=1948-1957&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2020.2995228&rft_dat=%3Cproquest_RIE%3E2892011192%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468764839&rft_id=info:pmid/&rft_ieee_id=9096587&rfr_iscdi=true |