Enabling Privacy-Assured Fog-Based Data Aggregation in E-Healthcare Systems

Wearable body area network is a key component of the modern-day e-healthcare system (e.g., telemedicine), particularly as the number and types of wearable medical monitoring systems increase. The importance of such systems is reinforced in the current COVID-19 pandemic. In addition to the need for a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2021-03, Vol.17 (3), p.1948-1957
Hauptverfasser: Guo, Cheng, Tian, Pengxu, Choo, Kim-Kwang Raymond
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wearable body area network is a key component of the modern-day e-healthcare system (e.g., telemedicine), particularly as the number and types of wearable medical monitoring systems increase. The importance of such systems is reinforced in the current COVID-19 pandemic. In addition to the need for a secure collection of medical data, there is also a need to process data in real-time. In this article, we design an improved symmetric homomorphic cryptosystem and a fog-based communication architecture to support delay- or time-sensitive monitoring and other-related applications. Specifically, medical data can be analyzed at the fog servers in a secure manner. This will facilitate decision making, for example, allowing relevant stakeholders to detect and respond to emergency situations, based on real-time data analysis. We present two attack games to demonstrate that our approach is secure (i.e., chosen-plaintext attack resilience under the computational Diffie-Hellman assumption), and evaluate the complexity of its computations. A comparative summary of its performance and three other related approaches suggests that our approach enables privacy-assured medical data aggregation, and the simulation experiments using Microsoft Azure further demonstrate the utility of our scheme.
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2020.2995228