Development of a gene doping detection method to detect overexpressed human follistatin using an adenovirus vector in mice

Background: Gene doping is the misuse of genome editing and gene therapy technologies for the purpose of manipulating specific genes or gene functions in order to improve athletic performance. However, a non-invasive detection method for gene doping using recombinant adenoviral (rAdV) vectors contai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ (San Francisco, CA) CA), 2021-10, Vol.9, p.e12285-e12285, Article e12285
Hauptverfasser: Yanazawa, Koki, Sugasawa, Takehito, Aoki, Kai, Nakano, Takuro, Kawakami, Yasushi, Takekoshi, Kazuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Gene doping is the misuse of genome editing and gene therapy technologies for the purpose of manipulating specific genes or gene functions in order to improve athletic performance. However, a non-invasive detection method for gene doping using recombinant adenoviral (rAdV) vectors containing human follistatin (hFST) genes (rAdV) has not yet been developed. Therefore, the aim of this study was to develop a method to detect gene doping using rAdV. Methods: First, we generated rAdV and evaluated the overexpression of the hFST gene, FST protein, and muscle protein synthesis signaling using cell lines. Next, rAdV was injected intravenously or intramuscularly into mice, and whole blood was collected, and hFST and cytomegalovirus promoter (CMVp) gene fragments were detected using TaqMan-quantitative polymerase chain reaction (qPCR). Finally, to confirm the specificity of the primers and the TaqMan probes, samples from each experiment were pooled, amplified using TaqMan-qPCR, and sequenced using the Sanger sequencing. Results: The expression of hFST and FST proteins and muscle protein synthesis signaling significantly increased in C2C12 cells. In long-term, transgene fragments could be detected until 4 days after intravenous injection and 3 days after intramuscular injection. Finally, the Sanger sequencing confirmed that the primers and TaqMan probe specifically amplified the gene sequence of interest. Conclusions: These results indicate the possibility of detecting gene doping using rAdV using TaqMan-qPCR in blood samples. This study may contribute to the development of detection methods for gene doping using rAdV.
ISSN:2167-8359
2167-8359
DOI:10.7717/peerj.12285