Preparation of Intercalated Organic Montmorillonite DOPO-MMT by Melting Method and Its Effect on Flame Retardancy to Epoxy Resin

An intercalated organic montmorillonite DOPO-MMT was prepared through the melting method using 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) as a modifier. Epoxy resin (EP) composites were prepared with DOPO-MMT, DOPO, MMT, and the physical mixtures of DOPO+MMT as flame retardants. The m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2021-10, Vol.13 (20), p.3496
Hauptverfasser: Geng, Junming, Qin, Jianyu, He, Jiyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An intercalated organic montmorillonite DOPO-MMT was prepared through the melting method using 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) as a modifier. Epoxy resin (EP) composites were prepared with DOPO-MMT, DOPO, MMT, and the physical mixtures of DOPO+MMT as flame retardants. The microstructure of the flame retardants and EP samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The flame retardant properties, thermal stability, and residual char structure of the EPs were studied by the limited oxygen index (LOI) test, the UL-94 vertical burning test, thermogravimetric analysis (TGA), the differential scanning calorimeter (DSC) test, the cone calorimeter (CONE) test as well as other characterization methods. The results showed that the intercalated organic montmorillonite DOPO-MMT can be successfully prepared by the melting method and that the MMT is evenly dispersed in the EP/DOPO-MMT composite in the form of nanosheets. The EP/DOPO-MMT nanocomposites showed the optimal flame retardancy (LOI, UL-94, PHRR, etc.) among the EPs with DOPO, MMT, and the physical mixture of DOPO+MMT. The flame-retardant grade of the material reached V-0.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym13203496