Influence of the Computer-Aided Static Navigation Technique and Mixed Reality Technology on the Accuracy of the Orthodontic Micro-Screws Placement. An In Vitro Study
To analyze the effect of a computer-aided static navigation technique and mixed reality technology on the accuracy of orthodontic micro-screw placement. Material and methods: Two hundred and seven orthodontic micro-screws were placed using either a computer-aided static navigation technique (NAV), a...
Gespeichert in:
Veröffentlicht in: | Journal of personalized medicine 2021-09, Vol.11 (10), p.964 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To analyze the effect of a computer-aided static navigation technique and mixed reality technology on the accuracy of orthodontic micro-screw placement. Material and methods: Two hundred and seven orthodontic micro-screws were placed using either a computer-aided static navigation technique (NAV), a mixed reality device (MR), or a conventional freehand technique (FHT). Accuracy across different dental sectors was also analyzed. CBCT and intraoral scans were taken both prior to and following orthodontic micro-screw placement. The deviation angle and horizontal deviation were then analyzed; these measurements were taken at the coronal entry point and apical endpoint between the planned and performed orthodontic micro-screws. In addition, any complications resulting from micro-screw placement, such as spot perforations, were also analyzed across all dental sectors. Results: The statistical analysis showed significant differences between study groups with regard to the coronal entry-point (p < 0.001). The NAV study group showed statistically significant differences from the FHT (p < 0.001) and MR study groups (p < 0.001) at the apical end-point (p < 0.001), and the FHT group found significant differences from the angular deviations of the NAV (p < 0.001) and MR study groups deviations (p = 0.0011). Different dental sectors also differed significantly. (p < 0.001) Additionally, twelve root perforations were observed in the FHT group, while there were no root perforations in the NAV group. Conclusions: Computer-aided static navigation technique enable more accurate orthodontic micro-screw placement and fewer intraoperative complications when compared with the mixed reality technology and conventional freehand techniques. |
---|---|
ISSN: | 2075-4426 2075-4426 |
DOI: | 10.3390/jpm11100964 |