In Vitro Study of the Interaction of Innate Immune Cells with Liquid Silicone Rubber Coated with Zwitterionic Methyl Methacrylate and Thermoplastic Polyurethanes
The biocompatibility of medical devices, such as implants and prostheses, is strongly determined by the host's immune response to the implanted material. Monocytes and macrophages are main actors of the so-called foreign body reaction. The innate immune system macrophages (M) can be broadly cla...
Gespeichert in:
Veröffentlicht in: | Materials 2021-10, Vol.14 (20), p.5972, Article 5972 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The biocompatibility of medical devices, such as implants and prostheses, is strongly determined by the host's immune response to the implanted material. Monocytes and macrophages are main actors of the so-called foreign body reaction. The innate immune system macrophages (M) can be broadly classified into the pro-inflammatory M1-type and the anti-inflammatory, pro-healing M2-type. While a transient inflammatory initial state can be helpful during an infection, persistent inflammation interferes with proper healing and subsequent regeneration. The functional orientation of the immune response, mirrored by monocyte polarization, during interaction with different biomaterials has not yet been sufficiently explored. In implant manufacturing, thermoplastic polyurethane (TPU) represents the state-of-the-art material. The constantly growing areas of application and the associated necessary adaptations make the optimization of these materials indispensable. In the present study, modified liquid silicone rubber (LSR) were compared with two of the most commonly used TPUs, in terms of monocyte adhesion and M1/M2 polarization in vitro. Human monocytes isolated from venous blood were evaluated for their ability to adhere to various biomaterials, their gene expression profile, and their cytokine release. Based on the results, the different polymers exhibit different potential to bias monocytes with respect to early pro-inflammatory cytokine production and gene transcription. Furthermore, none of our test materials showed a clear trend towards M1 or M2 polarization. However, we were able to evaluate the inflammatory potential of the materials, with the classic TPUs appearing to be the most unreactive compared to the silicone-based materials. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma14205972 |