Integrative Metabolomics Reveals Deep Tissue and Systemic Metabolic Remodeling in Glioblastoma
(1) Background: Glioblastoma is the most common malignant brain tumor in adults. Its etiology remains unknown in most cases. Glioblastoma pathogenesis consists of a progressive infiltration of the white matter by tumoral cells leading to progressive neurological deficit, epilepsy, and/or intracrania...
Gespeichert in:
Veröffentlicht in: | Cancers 2021-10, Vol.13 (20), p.5157 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | (1) Background: Glioblastoma is the most common malignant brain tumor in adults. Its etiology remains unknown in most cases. Glioblastoma pathogenesis consists of a progressive infiltration of the white matter by tumoral cells leading to progressive neurological deficit, epilepsy, and/or intracranial hypertension. The mean survival is between 15 to 17 months. Given this aggressive prognosis, there is an urgent need for a better understanding of the underlying mechanisms of glioblastoma to unveil new diagnostic strategies and therapeutic targets through a deeper understanding of its biology. (2) Methods: To systematically address this issue, we performed targeted and untargeted metabolomics-based investigations on both tissue and plasma samples from patients with glioblastoma. (3) Results: This study revealed 176 differentially expressed lipids and metabolites, 148 in plasma and 28 in tissue samples. Main biochemical classes include phospholipids, acylcarnitines, sphingomyelins, and triacylglycerols. Functional analyses revealed deep metabolic remodeling in glioblastoma lipids and energy substrates, which unveils the major role of lipids in tumor progression by modulating its own environment. (4) Conclusions: Overall, our study demonstrates in situ and systemic metabolic rewiring in glioblastoma that could shed light on its underlying biological plasticity and progression to inform diagnosis and/or therapeutic strategies. |
---|---|
ISSN: | 2072-6694 2072-6694 |
DOI: | 10.3390/cancers13205157 |