Bioplastics and Carbon-Based Sustainable Materials, Components, and Devices: Toward Green Electronics
The continuously growing number of short-life electronics equipment inherently results in a massive amount of problematic waste, which poses risks of environmental pollution, endangers human health, and causes socioeconomic problems. Hence, to mitigate these negative impacts, it is our common intere...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-10, Vol.13 (41), p.49301-49312 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49312 |
---|---|
container_issue | 41 |
container_start_page | 49301 |
container_title | ACS applied materials & interfaces |
container_volume | 13 |
creator | Bozó, Éva Ervasti, Henri Halonen, Niina Shokouh, Seyed Hossein Hosseini Tolvanen, Jarkko Pitkänen, Olli Järvinen, Topias Pálvölgyi, Petra S Szamosvölgyi, Ákos Sápi, András Konya, Zoltan Zaccone, Marta Montalbano, Luana De Brauwer, Laurens Nair, Rakesh Martínez-Nogués, Vanesa San Vicente Laurent, Leire Dietrich, Thomas Fernández de Castro, Laura Kordas, Krisztian |
description | The continuously growing number of short-life electronics equipment inherently results in a massive amount of problematic waste, which poses risks of environmental pollution, endangers human health, and causes socioeconomic problems. Hence, to mitigate these negative impacts, it is our common interest to substitute conventional materials (polymers and metals) used in electronics devices with their environmentally benign renewable counterparts, wherever possible, while considering the aspects of functionality, manufacturability, and cost. To support such an effort, in this study, we explore the use of biodegradable bioplastics, such as polylactic acid (PLA), its blends with polyhydroxybutyrate (PHB) and composites with pyrolyzed lignin (PL), and multiwalled carbon nanotubes (MWCNTs), in conjunction with processes typical in the fabrication of electronics components, including plasma treatment, dip coating, inkjet and screen printing, as well as hot mixing, extrusion, and molding. We show that after a short argon plasma treatment of the surface of hot-blown PLA-PHB blend films, percolating networks of single-walled carbon nanotubes (SWCNTs) having sheet resistance well below 1 kΩ/□ can be deposited by dip coating to make electrode plates of capacitive touch sensors. We also demonstrate that the bioplastic films, as flexible dielectric substrates, are suitable for depositing conductive micropatterns of SWCNTs and Ag (1 kΩ/□ and 1 Ω/□, respectively) by means of inkjet and screen printing, with potential in printed circuit board applications. In addition, we exemplify compounded and molded composites of PLA with PL and MWCNTs as excellent candidates for electromagnetic interference shielding materials in the K-band radio frequencies (18.0–26.5 GHz) with shielding effectiveness of up to 40 and 46 dB, respectively. |
doi_str_mv | 10.1021/acsami.1c13787 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8532127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579628200</sourcerecordid><originalsourceid>FETCH-LOGICAL-a425t-ccc4300752accbcaf5d1f2795f4987afcea5112e37b5689e1824171454450fff3</originalsourceid><addsrcrecordid>eNp1kUtP3DAUha2KqjzabZcoS4TI1HbsccICiZlSQKLqonRt3TjXYJTYg51Q8e8xmumoLFj5Sv7OuY9DyFdGZ4xy9g1MgsHNmGGVqtUHsscaIcqaS76zrYXYJfspPVA6rziVn8huJea0qXmzR3DhwqqHNDqTCvBdsYTYBl8uIGFX_J7SCM5D22PxE0aMDvp0UizDsAoe_ZjrV813fHIG02lxG_5C7IrLiOiLix7NGIPPzp_JR5uV-GXzHpA_Py5ul1flza_L6-X5TQmCy7E0xoiKUiU5GNMasLJjlqtGWtHUCqxBkIxxrFQr53WDLO_GFBNSCEmttdUBOVv7rqZ2wM7kESP0ehXdAPFZB3D67Y939_ouPOlaVpxxlQ2ONgYxPE6YRj24ZLDvwWOYkuZSNXNec0ozOlujJoaUItptG0b1azZ6nY3eZJMFh_8Pt8X_hZGB4zWQhfohTNHnW73n9gLNw5sn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579628200</pqid></control><display><type>article</type><title>Bioplastics and Carbon-Based Sustainable Materials, Components, and Devices: Toward Green Electronics</title><source>ACS Publications</source><creator>Bozó, Éva ; Ervasti, Henri ; Halonen, Niina ; Shokouh, Seyed Hossein Hosseini ; Tolvanen, Jarkko ; Pitkänen, Olli ; Järvinen, Topias ; Pálvölgyi, Petra S ; Szamosvölgyi, Ákos ; Sápi, András ; Konya, Zoltan ; Zaccone, Marta ; Montalbano, Luana ; De Brauwer, Laurens ; Nair, Rakesh ; Martínez-Nogués, Vanesa ; San Vicente Laurent, Leire ; Dietrich, Thomas ; Fernández de Castro, Laura ; Kordas, Krisztian</creator><creatorcontrib>Bozó, Éva ; Ervasti, Henri ; Halonen, Niina ; Shokouh, Seyed Hossein Hosseini ; Tolvanen, Jarkko ; Pitkänen, Olli ; Järvinen, Topias ; Pálvölgyi, Petra S ; Szamosvölgyi, Ákos ; Sápi, András ; Konya, Zoltan ; Zaccone, Marta ; Montalbano, Luana ; De Brauwer, Laurens ; Nair, Rakesh ; Martínez-Nogués, Vanesa ; San Vicente Laurent, Leire ; Dietrich, Thomas ; Fernández de Castro, Laura ; Kordas, Krisztian</creatorcontrib><description>The continuously growing number of short-life electronics equipment inherently results in a massive amount of problematic waste, which poses risks of environmental pollution, endangers human health, and causes socioeconomic problems. Hence, to mitigate these negative impacts, it is our common interest to substitute conventional materials (polymers and metals) used in electronics devices with their environmentally benign renewable counterparts, wherever possible, while considering the aspects of functionality, manufacturability, and cost. To support such an effort, in this study, we explore the use of biodegradable bioplastics, such as polylactic acid (PLA), its blends with polyhydroxybutyrate (PHB) and composites with pyrolyzed lignin (PL), and multiwalled carbon nanotubes (MWCNTs), in conjunction with processes typical in the fabrication of electronics components, including plasma treatment, dip coating, inkjet and screen printing, as well as hot mixing, extrusion, and molding. We show that after a short argon plasma treatment of the surface of hot-blown PLA-PHB blend films, percolating networks of single-walled carbon nanotubes (SWCNTs) having sheet resistance well below 1 kΩ/□ can be deposited by dip coating to make electrode plates of capacitive touch sensors. We also demonstrate that the bioplastic films, as flexible dielectric substrates, are suitable for depositing conductive micropatterns of SWCNTs and Ag (1 kΩ/□ and 1 Ω/□, respectively) by means of inkjet and screen printing, with potential in printed circuit board applications. In addition, we exemplify compounded and molded composites of PLA with PL and MWCNTs as excellent candidates for electromagnetic interference shielding materials in the K-band radio frequencies (18.0–26.5 GHz) with shielding effectiveness of up to 40 and 46 dB, respectively.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c13787</identifier><identifier>PMID: 34609829</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Applications of Polymer, Composite, and Coating Materials</subject><ispartof>ACS applied materials & interfaces, 2021-10, Vol.13 (41), p.49301-49312</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a425t-ccc4300752accbcaf5d1f2795f4987afcea5112e37b5689e1824171454450fff3</citedby><cites>FETCH-LOGICAL-a425t-ccc4300752accbcaf5d1f2795f4987afcea5112e37b5689e1824171454450fff3</cites><orcidid>0000-0001-6557-0731 ; 0000-0002-7331-1278 ; 0000-0002-4960-2286 ; 0000-0003-2870-3229 ; 0000-0002-9406-8596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c13787$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c13787$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34609829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bozó, Éva</creatorcontrib><creatorcontrib>Ervasti, Henri</creatorcontrib><creatorcontrib>Halonen, Niina</creatorcontrib><creatorcontrib>Shokouh, Seyed Hossein Hosseini</creatorcontrib><creatorcontrib>Tolvanen, Jarkko</creatorcontrib><creatorcontrib>Pitkänen, Olli</creatorcontrib><creatorcontrib>Järvinen, Topias</creatorcontrib><creatorcontrib>Pálvölgyi, Petra S</creatorcontrib><creatorcontrib>Szamosvölgyi, Ákos</creatorcontrib><creatorcontrib>Sápi, András</creatorcontrib><creatorcontrib>Konya, Zoltan</creatorcontrib><creatorcontrib>Zaccone, Marta</creatorcontrib><creatorcontrib>Montalbano, Luana</creatorcontrib><creatorcontrib>De Brauwer, Laurens</creatorcontrib><creatorcontrib>Nair, Rakesh</creatorcontrib><creatorcontrib>Martínez-Nogués, Vanesa</creatorcontrib><creatorcontrib>San Vicente Laurent, Leire</creatorcontrib><creatorcontrib>Dietrich, Thomas</creatorcontrib><creatorcontrib>Fernández de Castro, Laura</creatorcontrib><creatorcontrib>Kordas, Krisztian</creatorcontrib><title>Bioplastics and Carbon-Based Sustainable Materials, Components, and Devices: Toward Green Electronics</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The continuously growing number of short-life electronics equipment inherently results in a massive amount of problematic waste, which poses risks of environmental pollution, endangers human health, and causes socioeconomic problems. Hence, to mitigate these negative impacts, it is our common interest to substitute conventional materials (polymers and metals) used in electronics devices with their environmentally benign renewable counterparts, wherever possible, while considering the aspects of functionality, manufacturability, and cost. To support such an effort, in this study, we explore the use of biodegradable bioplastics, such as polylactic acid (PLA), its blends with polyhydroxybutyrate (PHB) and composites with pyrolyzed lignin (PL), and multiwalled carbon nanotubes (MWCNTs), in conjunction with processes typical in the fabrication of electronics components, including plasma treatment, dip coating, inkjet and screen printing, as well as hot mixing, extrusion, and molding. We show that after a short argon plasma treatment of the surface of hot-blown PLA-PHB blend films, percolating networks of single-walled carbon nanotubes (SWCNTs) having sheet resistance well below 1 kΩ/□ can be deposited by dip coating to make electrode plates of capacitive touch sensors. We also demonstrate that the bioplastic films, as flexible dielectric substrates, are suitable for depositing conductive micropatterns of SWCNTs and Ag (1 kΩ/□ and 1 Ω/□, respectively) by means of inkjet and screen printing, with potential in printed circuit board applications. In addition, we exemplify compounded and molded composites of PLA with PL and MWCNTs as excellent candidates for electromagnetic interference shielding materials in the K-band radio frequencies (18.0–26.5 GHz) with shielding effectiveness of up to 40 and 46 dB, respectively.</description><subject>Applications of Polymer, Composite, and Coating Materials</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kUtP3DAUha2KqjzabZcoS4TI1HbsccICiZlSQKLqonRt3TjXYJTYg51Q8e8xmumoLFj5Sv7OuY9DyFdGZ4xy9g1MgsHNmGGVqtUHsscaIcqaS76zrYXYJfspPVA6rziVn8huJea0qXmzR3DhwqqHNDqTCvBdsYTYBl8uIGFX_J7SCM5D22PxE0aMDvp0UizDsAoe_ZjrV813fHIG02lxG_5C7IrLiOiLix7NGIPPzp_JR5uV-GXzHpA_Py5ul1flza_L6-X5TQmCy7E0xoiKUiU5GNMasLJjlqtGWtHUCqxBkIxxrFQr53WDLO_GFBNSCEmttdUBOVv7rqZ2wM7kESP0ehXdAPFZB3D67Y939_ouPOlaVpxxlQ2ONgYxPE6YRj24ZLDvwWOYkuZSNXNec0ozOlujJoaUItptG0b1azZ6nY3eZJMFh_8Pt8X_hZGB4zWQhfohTNHnW73n9gLNw5sn</recordid><startdate>20211020</startdate><enddate>20211020</enddate><creator>Bozó, Éva</creator><creator>Ervasti, Henri</creator><creator>Halonen, Niina</creator><creator>Shokouh, Seyed Hossein Hosseini</creator><creator>Tolvanen, Jarkko</creator><creator>Pitkänen, Olli</creator><creator>Järvinen, Topias</creator><creator>Pálvölgyi, Petra S</creator><creator>Szamosvölgyi, Ákos</creator><creator>Sápi, András</creator><creator>Konya, Zoltan</creator><creator>Zaccone, Marta</creator><creator>Montalbano, Luana</creator><creator>De Brauwer, Laurens</creator><creator>Nair, Rakesh</creator><creator>Martínez-Nogués, Vanesa</creator><creator>San Vicente Laurent, Leire</creator><creator>Dietrich, Thomas</creator><creator>Fernández de Castro, Laura</creator><creator>Kordas, Krisztian</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6557-0731</orcidid><orcidid>https://orcid.org/0000-0002-7331-1278</orcidid><orcidid>https://orcid.org/0000-0002-4960-2286</orcidid><orcidid>https://orcid.org/0000-0003-2870-3229</orcidid><orcidid>https://orcid.org/0000-0002-9406-8596</orcidid></search><sort><creationdate>20211020</creationdate><title>Bioplastics and Carbon-Based Sustainable Materials, Components, and Devices: Toward Green Electronics</title><author>Bozó, Éva ; Ervasti, Henri ; Halonen, Niina ; Shokouh, Seyed Hossein Hosseini ; Tolvanen, Jarkko ; Pitkänen, Olli ; Järvinen, Topias ; Pálvölgyi, Petra S ; Szamosvölgyi, Ákos ; Sápi, András ; Konya, Zoltan ; Zaccone, Marta ; Montalbano, Luana ; De Brauwer, Laurens ; Nair, Rakesh ; Martínez-Nogués, Vanesa ; San Vicente Laurent, Leire ; Dietrich, Thomas ; Fernández de Castro, Laura ; Kordas, Krisztian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a425t-ccc4300752accbcaf5d1f2795f4987afcea5112e37b5689e1824171454450fff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Polymer, Composite, and Coating Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bozó, Éva</creatorcontrib><creatorcontrib>Ervasti, Henri</creatorcontrib><creatorcontrib>Halonen, Niina</creatorcontrib><creatorcontrib>Shokouh, Seyed Hossein Hosseini</creatorcontrib><creatorcontrib>Tolvanen, Jarkko</creatorcontrib><creatorcontrib>Pitkänen, Olli</creatorcontrib><creatorcontrib>Järvinen, Topias</creatorcontrib><creatorcontrib>Pálvölgyi, Petra S</creatorcontrib><creatorcontrib>Szamosvölgyi, Ákos</creatorcontrib><creatorcontrib>Sápi, András</creatorcontrib><creatorcontrib>Konya, Zoltan</creatorcontrib><creatorcontrib>Zaccone, Marta</creatorcontrib><creatorcontrib>Montalbano, Luana</creatorcontrib><creatorcontrib>De Brauwer, Laurens</creatorcontrib><creatorcontrib>Nair, Rakesh</creatorcontrib><creatorcontrib>Martínez-Nogués, Vanesa</creatorcontrib><creatorcontrib>San Vicente Laurent, Leire</creatorcontrib><creatorcontrib>Dietrich, Thomas</creatorcontrib><creatorcontrib>Fernández de Castro, Laura</creatorcontrib><creatorcontrib>Kordas, Krisztian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bozó, Éva</au><au>Ervasti, Henri</au><au>Halonen, Niina</au><au>Shokouh, Seyed Hossein Hosseini</au><au>Tolvanen, Jarkko</au><au>Pitkänen, Olli</au><au>Järvinen, Topias</au><au>Pálvölgyi, Petra S</au><au>Szamosvölgyi, Ákos</au><au>Sápi, András</au><au>Konya, Zoltan</au><au>Zaccone, Marta</au><au>Montalbano, Luana</au><au>De Brauwer, Laurens</au><au>Nair, Rakesh</au><au>Martínez-Nogués, Vanesa</au><au>San Vicente Laurent, Leire</au><au>Dietrich, Thomas</au><au>Fernández de Castro, Laura</au><au>Kordas, Krisztian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioplastics and Carbon-Based Sustainable Materials, Components, and Devices: Toward Green Electronics</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-10-20</date><risdate>2021</risdate><volume>13</volume><issue>41</issue><spage>49301</spage><epage>49312</epage><pages>49301-49312</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>The continuously growing number of short-life electronics equipment inherently results in a massive amount of problematic waste, which poses risks of environmental pollution, endangers human health, and causes socioeconomic problems. Hence, to mitigate these negative impacts, it is our common interest to substitute conventional materials (polymers and metals) used in electronics devices with their environmentally benign renewable counterparts, wherever possible, while considering the aspects of functionality, manufacturability, and cost. To support such an effort, in this study, we explore the use of biodegradable bioplastics, such as polylactic acid (PLA), its blends with polyhydroxybutyrate (PHB) and composites with pyrolyzed lignin (PL), and multiwalled carbon nanotubes (MWCNTs), in conjunction with processes typical in the fabrication of electronics components, including plasma treatment, dip coating, inkjet and screen printing, as well as hot mixing, extrusion, and molding. We show that after a short argon plasma treatment of the surface of hot-blown PLA-PHB blend films, percolating networks of single-walled carbon nanotubes (SWCNTs) having sheet resistance well below 1 kΩ/□ can be deposited by dip coating to make electrode plates of capacitive touch sensors. We also demonstrate that the bioplastic films, as flexible dielectric substrates, are suitable for depositing conductive micropatterns of SWCNTs and Ag (1 kΩ/□ and 1 Ω/□, respectively) by means of inkjet and screen printing, with potential in printed circuit board applications. In addition, we exemplify compounded and molded composites of PLA with PL and MWCNTs as excellent candidates for electromagnetic interference shielding materials in the K-band radio frequencies (18.0–26.5 GHz) with shielding effectiveness of up to 40 and 46 dB, respectively.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34609829</pmid><doi>10.1021/acsami.1c13787</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6557-0731</orcidid><orcidid>https://orcid.org/0000-0002-7331-1278</orcidid><orcidid>https://orcid.org/0000-0002-4960-2286</orcidid><orcidid>https://orcid.org/0000-0003-2870-3229</orcidid><orcidid>https://orcid.org/0000-0002-9406-8596</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2021-10, Vol.13 (41), p.49301-49312 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8532127 |
source | ACS Publications |
subjects | Applications of Polymer, Composite, and Coating Materials |
title | Bioplastics and Carbon-Based Sustainable Materials, Components, and Devices: Toward Green Electronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A12%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioplastics%20and%20Carbon-Based%20Sustainable%20Materials,%20Components,%20and%20Devices:%20Toward%20Green%20Electronics&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Bozo%CC%81,%20E%CC%81va&rft.date=2021-10-20&rft.volume=13&rft.issue=41&rft.spage=49301&rft.epage=49312&rft.pages=49301-49312&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c13787&rft_dat=%3Cproquest_pubme%3E2579628200%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579628200&rft_id=info:pmid/34609829&rfr_iscdi=true |