Bioplastics and Carbon-Based Sustainable Materials, Components, and Devices: Toward Green Electronics

The continuously growing number of short-life electronics equipment inherently results in a massive amount of problematic waste, which poses risks of environmental pollution, endangers human health, and causes socioeconomic problems. Hence, to mitigate these negative impacts, it is our common intere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-10, Vol.13 (41), p.49301-49312
Hauptverfasser: Bozó, Éva, Ervasti, Henri, Halonen, Niina, Shokouh, Seyed Hossein Hosseini, Tolvanen, Jarkko, Pitkänen, Olli, Järvinen, Topias, Pálvölgyi, Petra S, Szamosvölgyi, Ákos, Sápi, András, Konya, Zoltan, Zaccone, Marta, Montalbano, Luana, De Brauwer, Laurens, Nair, Rakesh, Martínez-Nogués, Vanesa, San Vicente Laurent, Leire, Dietrich, Thomas, Fernández de Castro, Laura, Kordas, Krisztian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49312
container_issue 41
container_start_page 49301
container_title ACS applied materials & interfaces
container_volume 13
creator Bozó, Éva
Ervasti, Henri
Halonen, Niina
Shokouh, Seyed Hossein Hosseini
Tolvanen, Jarkko
Pitkänen, Olli
Järvinen, Topias
Pálvölgyi, Petra S
Szamosvölgyi, Ákos
Sápi, András
Konya, Zoltan
Zaccone, Marta
Montalbano, Luana
De Brauwer, Laurens
Nair, Rakesh
Martínez-Nogués, Vanesa
San Vicente Laurent, Leire
Dietrich, Thomas
Fernández de Castro, Laura
Kordas, Krisztian
description The continuously growing number of short-life electronics equipment inherently results in a massive amount of problematic waste, which poses risks of environmental pollution, endangers human health, and causes socioeconomic problems. Hence, to mitigate these negative impacts, it is our common interest to substitute conventional materials (polymers and metals) used in electronics devices with their environmentally benign renewable counterparts, wherever possible, while considering the aspects of functionality, manufacturability, and cost. To support such an effort, in this study, we explore the use of biodegradable bioplastics, such as polylactic acid (PLA), its blends with polyhydroxybutyrate (PHB) and composites with pyrolyzed lignin (PL), and multiwalled carbon nanotubes (MWCNTs), in conjunction with processes typical in the fabrication of electronics components, including plasma treatment, dip coating, inkjet and screen printing, as well as hot mixing, extrusion, and molding. We show that after a short argon plasma treatment of the surface of hot-blown PLA-PHB blend films, percolating networks of single-walled carbon nanotubes (SWCNTs) having sheet resistance well below 1 kΩ/□ can be deposited by dip coating to make electrode plates of capacitive touch sensors. We also demonstrate that the bioplastic films, as flexible dielectric substrates, are suitable for depositing conductive micropatterns of SWCNTs and Ag (1 kΩ/□ and 1 Ω/□, respectively) by means of inkjet and screen printing, with potential in printed circuit board applications. In addition, we exemplify compounded and molded composites of PLA with PL and MWCNTs as excellent candidates for electromagnetic interference shielding materials in the K-band radio frequencies (18.0–26.5 GHz) with shielding effectiveness of up to 40 and 46 dB, respectively.
doi_str_mv 10.1021/acsami.1c13787
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8532127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579628200</sourcerecordid><originalsourceid>FETCH-LOGICAL-a425t-ccc4300752accbcaf5d1f2795f4987afcea5112e37b5689e1824171454450fff3</originalsourceid><addsrcrecordid>eNp1kUtP3DAUha2KqjzabZcoS4TI1HbsccICiZlSQKLqonRt3TjXYJTYg51Q8e8xmumoLFj5Sv7OuY9DyFdGZ4xy9g1MgsHNmGGVqtUHsscaIcqaS76zrYXYJfspPVA6rziVn8huJea0qXmzR3DhwqqHNDqTCvBdsYTYBl8uIGFX_J7SCM5D22PxE0aMDvp0UizDsAoe_ZjrV813fHIG02lxG_5C7IrLiOiLix7NGIPPzp_JR5uV-GXzHpA_Py5ul1flza_L6-X5TQmCy7E0xoiKUiU5GNMasLJjlqtGWtHUCqxBkIxxrFQr53WDLO_GFBNSCEmttdUBOVv7rqZ2wM7kESP0ehXdAPFZB3D67Y939_ouPOlaVpxxlQ2ONgYxPE6YRj24ZLDvwWOYkuZSNXNec0ozOlujJoaUItptG0b1azZ6nY3eZJMFh_8Pt8X_hZGB4zWQhfohTNHnW73n9gLNw5sn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579628200</pqid></control><display><type>article</type><title>Bioplastics and Carbon-Based Sustainable Materials, Components, and Devices: Toward Green Electronics</title><source>ACS Publications</source><creator>Bozó, Éva ; Ervasti, Henri ; Halonen, Niina ; Shokouh, Seyed Hossein Hosseini ; Tolvanen, Jarkko ; Pitkänen, Olli ; Järvinen, Topias ; Pálvölgyi, Petra S ; Szamosvölgyi, Ákos ; Sápi, András ; Konya, Zoltan ; Zaccone, Marta ; Montalbano, Luana ; De Brauwer, Laurens ; Nair, Rakesh ; Martínez-Nogués, Vanesa ; San Vicente Laurent, Leire ; Dietrich, Thomas ; Fernández de Castro, Laura ; Kordas, Krisztian</creator><creatorcontrib>Bozó, Éva ; Ervasti, Henri ; Halonen, Niina ; Shokouh, Seyed Hossein Hosseini ; Tolvanen, Jarkko ; Pitkänen, Olli ; Järvinen, Topias ; Pálvölgyi, Petra S ; Szamosvölgyi, Ákos ; Sápi, András ; Konya, Zoltan ; Zaccone, Marta ; Montalbano, Luana ; De Brauwer, Laurens ; Nair, Rakesh ; Martínez-Nogués, Vanesa ; San Vicente Laurent, Leire ; Dietrich, Thomas ; Fernández de Castro, Laura ; Kordas, Krisztian</creatorcontrib><description>The continuously growing number of short-life electronics equipment inherently results in a massive amount of problematic waste, which poses risks of environmental pollution, endangers human health, and causes socioeconomic problems. Hence, to mitigate these negative impacts, it is our common interest to substitute conventional materials (polymers and metals) used in electronics devices with their environmentally benign renewable counterparts, wherever possible, while considering the aspects of functionality, manufacturability, and cost. To support such an effort, in this study, we explore the use of biodegradable bioplastics, such as polylactic acid (PLA), its blends with polyhydroxybutyrate (PHB) and composites with pyrolyzed lignin (PL), and multiwalled carbon nanotubes (MWCNTs), in conjunction with processes typical in the fabrication of electronics components, including plasma treatment, dip coating, inkjet and screen printing, as well as hot mixing, extrusion, and molding. We show that after a short argon plasma treatment of the surface of hot-blown PLA-PHB blend films, percolating networks of single-walled carbon nanotubes (SWCNTs) having sheet resistance well below 1 kΩ/□ can be deposited by dip coating to make electrode plates of capacitive touch sensors. We also demonstrate that the bioplastic films, as flexible dielectric substrates, are suitable for depositing conductive micropatterns of SWCNTs and Ag (1 kΩ/□ and 1 Ω/□, respectively) by means of inkjet and screen printing, with potential in printed circuit board applications. In addition, we exemplify compounded and molded composites of PLA with PL and MWCNTs as excellent candidates for electromagnetic interference shielding materials in the K-band radio frequencies (18.0–26.5 GHz) with shielding effectiveness of up to 40 and 46 dB, respectively.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c13787</identifier><identifier>PMID: 34609829</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Applications of Polymer, Composite, and Coating Materials</subject><ispartof>ACS applied materials &amp; interfaces, 2021-10, Vol.13 (41), p.49301-49312</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a425t-ccc4300752accbcaf5d1f2795f4987afcea5112e37b5689e1824171454450fff3</citedby><cites>FETCH-LOGICAL-a425t-ccc4300752accbcaf5d1f2795f4987afcea5112e37b5689e1824171454450fff3</cites><orcidid>0000-0001-6557-0731 ; 0000-0002-7331-1278 ; 0000-0002-4960-2286 ; 0000-0003-2870-3229 ; 0000-0002-9406-8596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c13787$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c13787$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34609829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bozó, Éva</creatorcontrib><creatorcontrib>Ervasti, Henri</creatorcontrib><creatorcontrib>Halonen, Niina</creatorcontrib><creatorcontrib>Shokouh, Seyed Hossein Hosseini</creatorcontrib><creatorcontrib>Tolvanen, Jarkko</creatorcontrib><creatorcontrib>Pitkänen, Olli</creatorcontrib><creatorcontrib>Järvinen, Topias</creatorcontrib><creatorcontrib>Pálvölgyi, Petra S</creatorcontrib><creatorcontrib>Szamosvölgyi, Ákos</creatorcontrib><creatorcontrib>Sápi, András</creatorcontrib><creatorcontrib>Konya, Zoltan</creatorcontrib><creatorcontrib>Zaccone, Marta</creatorcontrib><creatorcontrib>Montalbano, Luana</creatorcontrib><creatorcontrib>De Brauwer, Laurens</creatorcontrib><creatorcontrib>Nair, Rakesh</creatorcontrib><creatorcontrib>Martínez-Nogués, Vanesa</creatorcontrib><creatorcontrib>San Vicente Laurent, Leire</creatorcontrib><creatorcontrib>Dietrich, Thomas</creatorcontrib><creatorcontrib>Fernández de Castro, Laura</creatorcontrib><creatorcontrib>Kordas, Krisztian</creatorcontrib><title>Bioplastics and Carbon-Based Sustainable Materials, Components, and Devices: Toward Green Electronics</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The continuously growing number of short-life electronics equipment inherently results in a massive amount of problematic waste, which poses risks of environmental pollution, endangers human health, and causes socioeconomic problems. Hence, to mitigate these negative impacts, it is our common interest to substitute conventional materials (polymers and metals) used in electronics devices with their environmentally benign renewable counterparts, wherever possible, while considering the aspects of functionality, manufacturability, and cost. To support such an effort, in this study, we explore the use of biodegradable bioplastics, such as polylactic acid (PLA), its blends with polyhydroxybutyrate (PHB) and composites with pyrolyzed lignin (PL), and multiwalled carbon nanotubes (MWCNTs), in conjunction with processes typical in the fabrication of electronics components, including plasma treatment, dip coating, inkjet and screen printing, as well as hot mixing, extrusion, and molding. We show that after a short argon plasma treatment of the surface of hot-blown PLA-PHB blend films, percolating networks of single-walled carbon nanotubes (SWCNTs) having sheet resistance well below 1 kΩ/□ can be deposited by dip coating to make electrode plates of capacitive touch sensors. We also demonstrate that the bioplastic films, as flexible dielectric substrates, are suitable for depositing conductive micropatterns of SWCNTs and Ag (1 kΩ/□ and 1 Ω/□, respectively) by means of inkjet and screen printing, with potential in printed circuit board applications. In addition, we exemplify compounded and molded composites of PLA with PL and MWCNTs as excellent candidates for electromagnetic interference shielding materials in the K-band radio frequencies (18.0–26.5 GHz) with shielding effectiveness of up to 40 and 46 dB, respectively.</description><subject>Applications of Polymer, Composite, and Coating Materials</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kUtP3DAUha2KqjzabZcoS4TI1HbsccICiZlSQKLqonRt3TjXYJTYg51Q8e8xmumoLFj5Sv7OuY9DyFdGZ4xy9g1MgsHNmGGVqtUHsscaIcqaS76zrYXYJfspPVA6rziVn8huJea0qXmzR3DhwqqHNDqTCvBdsYTYBl8uIGFX_J7SCM5D22PxE0aMDvp0UizDsAoe_ZjrV813fHIG02lxG_5C7IrLiOiLix7NGIPPzp_JR5uV-GXzHpA_Py5ul1flza_L6-X5TQmCy7E0xoiKUiU5GNMasLJjlqtGWtHUCqxBkIxxrFQr53WDLO_GFBNSCEmttdUBOVv7rqZ2wM7kESP0ehXdAPFZB3D67Y939_ouPOlaVpxxlQ2ONgYxPE6YRj24ZLDvwWOYkuZSNXNec0ozOlujJoaUItptG0b1azZ6nY3eZJMFh_8Pt8X_hZGB4zWQhfohTNHnW73n9gLNw5sn</recordid><startdate>20211020</startdate><enddate>20211020</enddate><creator>Bozó, Éva</creator><creator>Ervasti, Henri</creator><creator>Halonen, Niina</creator><creator>Shokouh, Seyed Hossein Hosseini</creator><creator>Tolvanen, Jarkko</creator><creator>Pitkänen, Olli</creator><creator>Järvinen, Topias</creator><creator>Pálvölgyi, Petra S</creator><creator>Szamosvölgyi, Ákos</creator><creator>Sápi, András</creator><creator>Konya, Zoltan</creator><creator>Zaccone, Marta</creator><creator>Montalbano, Luana</creator><creator>De Brauwer, Laurens</creator><creator>Nair, Rakesh</creator><creator>Martínez-Nogués, Vanesa</creator><creator>San Vicente Laurent, Leire</creator><creator>Dietrich, Thomas</creator><creator>Fernández de Castro, Laura</creator><creator>Kordas, Krisztian</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6557-0731</orcidid><orcidid>https://orcid.org/0000-0002-7331-1278</orcidid><orcidid>https://orcid.org/0000-0002-4960-2286</orcidid><orcidid>https://orcid.org/0000-0003-2870-3229</orcidid><orcidid>https://orcid.org/0000-0002-9406-8596</orcidid></search><sort><creationdate>20211020</creationdate><title>Bioplastics and Carbon-Based Sustainable Materials, Components, and Devices: Toward Green Electronics</title><author>Bozó, Éva ; Ervasti, Henri ; Halonen, Niina ; Shokouh, Seyed Hossein Hosseini ; Tolvanen, Jarkko ; Pitkänen, Olli ; Järvinen, Topias ; Pálvölgyi, Petra S ; Szamosvölgyi, Ákos ; Sápi, András ; Konya, Zoltan ; Zaccone, Marta ; Montalbano, Luana ; De Brauwer, Laurens ; Nair, Rakesh ; Martínez-Nogués, Vanesa ; San Vicente Laurent, Leire ; Dietrich, Thomas ; Fernández de Castro, Laura ; Kordas, Krisztian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a425t-ccc4300752accbcaf5d1f2795f4987afcea5112e37b5689e1824171454450fff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Polymer, Composite, and Coating Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bozó, Éva</creatorcontrib><creatorcontrib>Ervasti, Henri</creatorcontrib><creatorcontrib>Halonen, Niina</creatorcontrib><creatorcontrib>Shokouh, Seyed Hossein Hosseini</creatorcontrib><creatorcontrib>Tolvanen, Jarkko</creatorcontrib><creatorcontrib>Pitkänen, Olli</creatorcontrib><creatorcontrib>Järvinen, Topias</creatorcontrib><creatorcontrib>Pálvölgyi, Petra S</creatorcontrib><creatorcontrib>Szamosvölgyi, Ákos</creatorcontrib><creatorcontrib>Sápi, András</creatorcontrib><creatorcontrib>Konya, Zoltan</creatorcontrib><creatorcontrib>Zaccone, Marta</creatorcontrib><creatorcontrib>Montalbano, Luana</creatorcontrib><creatorcontrib>De Brauwer, Laurens</creatorcontrib><creatorcontrib>Nair, Rakesh</creatorcontrib><creatorcontrib>Martínez-Nogués, Vanesa</creatorcontrib><creatorcontrib>San Vicente Laurent, Leire</creatorcontrib><creatorcontrib>Dietrich, Thomas</creatorcontrib><creatorcontrib>Fernández de Castro, Laura</creatorcontrib><creatorcontrib>Kordas, Krisztian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bozó, Éva</au><au>Ervasti, Henri</au><au>Halonen, Niina</au><au>Shokouh, Seyed Hossein Hosseini</au><au>Tolvanen, Jarkko</au><au>Pitkänen, Olli</au><au>Järvinen, Topias</au><au>Pálvölgyi, Petra S</au><au>Szamosvölgyi, Ákos</au><au>Sápi, András</au><au>Konya, Zoltan</au><au>Zaccone, Marta</au><au>Montalbano, Luana</au><au>De Brauwer, Laurens</au><au>Nair, Rakesh</au><au>Martínez-Nogués, Vanesa</au><au>San Vicente Laurent, Leire</au><au>Dietrich, Thomas</au><au>Fernández de Castro, Laura</au><au>Kordas, Krisztian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioplastics and Carbon-Based Sustainable Materials, Components, and Devices: Toward Green Electronics</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-10-20</date><risdate>2021</risdate><volume>13</volume><issue>41</issue><spage>49301</spage><epage>49312</epage><pages>49301-49312</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>The continuously growing number of short-life electronics equipment inherently results in a massive amount of problematic waste, which poses risks of environmental pollution, endangers human health, and causes socioeconomic problems. Hence, to mitigate these negative impacts, it is our common interest to substitute conventional materials (polymers and metals) used in electronics devices with their environmentally benign renewable counterparts, wherever possible, while considering the aspects of functionality, manufacturability, and cost. To support such an effort, in this study, we explore the use of biodegradable bioplastics, such as polylactic acid (PLA), its blends with polyhydroxybutyrate (PHB) and composites with pyrolyzed lignin (PL), and multiwalled carbon nanotubes (MWCNTs), in conjunction with processes typical in the fabrication of electronics components, including plasma treatment, dip coating, inkjet and screen printing, as well as hot mixing, extrusion, and molding. We show that after a short argon plasma treatment of the surface of hot-blown PLA-PHB blend films, percolating networks of single-walled carbon nanotubes (SWCNTs) having sheet resistance well below 1 kΩ/□ can be deposited by dip coating to make electrode plates of capacitive touch sensors. We also demonstrate that the bioplastic films, as flexible dielectric substrates, are suitable for depositing conductive micropatterns of SWCNTs and Ag (1 kΩ/□ and 1 Ω/□, respectively) by means of inkjet and screen printing, with potential in printed circuit board applications. In addition, we exemplify compounded and molded composites of PLA with PL and MWCNTs as excellent candidates for electromagnetic interference shielding materials in the K-band radio frequencies (18.0–26.5 GHz) with shielding effectiveness of up to 40 and 46 dB, respectively.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34609829</pmid><doi>10.1021/acsami.1c13787</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6557-0731</orcidid><orcidid>https://orcid.org/0000-0002-7331-1278</orcidid><orcidid>https://orcid.org/0000-0002-4960-2286</orcidid><orcidid>https://orcid.org/0000-0003-2870-3229</orcidid><orcidid>https://orcid.org/0000-0002-9406-8596</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-10, Vol.13 (41), p.49301-49312
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8532127
source ACS Publications
subjects Applications of Polymer, Composite, and Coating Materials
title Bioplastics and Carbon-Based Sustainable Materials, Components, and Devices: Toward Green Electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A12%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioplastics%20and%20Carbon-Based%20Sustainable%20Materials,%20Components,%20and%20Devices:%20Toward%20Green%20Electronics&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Bozo%CC%81,%20E%CC%81va&rft.date=2021-10-20&rft.volume=13&rft.issue=41&rft.spage=49301&rft.epage=49312&rft.pages=49301-49312&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c13787&rft_dat=%3Cproquest_pubme%3E2579628200%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579628200&rft_id=info:pmid/34609829&rfr_iscdi=true