Bioplastics and Carbon-Based Sustainable Materials, Components, and Devices: Toward Green Electronics

The continuously growing number of short-life electronics equipment inherently results in a massive amount of problematic waste, which poses risks of environmental pollution, endangers human health, and causes socioeconomic problems. Hence, to mitigate these negative impacts, it is our common intere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-10, Vol.13 (41), p.49301-49312
Hauptverfasser: Bozó, Éva, Ervasti, Henri, Halonen, Niina, Shokouh, Seyed Hossein Hosseini, Tolvanen, Jarkko, Pitkänen, Olli, Järvinen, Topias, Pálvölgyi, Petra S, Szamosvölgyi, Ákos, Sápi, András, Konya, Zoltan, Zaccone, Marta, Montalbano, Luana, De Brauwer, Laurens, Nair, Rakesh, Martínez-Nogués, Vanesa, San Vicente Laurent, Leire, Dietrich, Thomas, Fernández de Castro, Laura, Kordas, Krisztian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The continuously growing number of short-life electronics equipment inherently results in a massive amount of problematic waste, which poses risks of environmental pollution, endangers human health, and causes socioeconomic problems. Hence, to mitigate these negative impacts, it is our common interest to substitute conventional materials (polymers and metals) used in electronics devices with their environmentally benign renewable counterparts, wherever possible, while considering the aspects of functionality, manufacturability, and cost. To support such an effort, in this study, we explore the use of biodegradable bioplastics, such as polylactic acid (PLA), its blends with polyhydroxybutyrate (PHB) and composites with pyrolyzed lignin (PL), and multiwalled carbon nanotubes (MWCNTs), in conjunction with processes typical in the fabrication of electronics components, including plasma treatment, dip coating, inkjet and screen printing, as well as hot mixing, extrusion, and molding. We show that after a short argon plasma treatment of the surface of hot-blown PLA-PHB blend films, percolating networks of single-walled carbon nanotubes (SWCNTs) having sheet resistance well below 1 kΩ/□ can be deposited by dip coating to make electrode plates of capacitive touch sensors. We also demonstrate that the bioplastic films, as flexible dielectric substrates, are suitable for depositing conductive micropatterns of SWCNTs and Ag (1 kΩ/□ and 1 Ω/□, respectively) by means of inkjet and screen printing, with potential in printed circuit board applications. In addition, we exemplify compounded and molded composites of PLA with PL and MWCNTs as excellent candidates for electromagnetic interference shielding materials in the K-band radio frequencies (18.0–26.5 GHz) with shielding effectiveness of up to 40 and 46 dB, respectively.
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.1c13787