Physicochemical and microbiological characteristics of urban aerosols in Krakow (Poland) and their potential health impact
Eight aerosol samples were collected in Krakow using a low-volume sampler in February and March 2019 during variable meteorological conditions and times of the day, to study their single particles’ properties (size, morphology and chemical composition analyzed using a scanning electron microscope fi...
Gespeichert in:
Veröffentlicht in: | Environmental geochemistry and health 2021-11, Vol.43 (11), p.4601-4626 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Eight aerosol samples were collected in Krakow using a low-volume sampler in February and March 2019 during variable meteorological conditions and times of the day, to study their single particles’ properties (size, morphology and chemical composition analyzed using a scanning electron microscope fitted with an energy-dispersive spectrometer) and microbiological characteristics. The content of particles of different chemical compositions larger than 2.5 μm was low. Considering the number of the particles, submicron particles strongly dominated with a high content of ultrafine particles (nanoparticles). Tar ball-type particles were relatively common in the studied samples, while soot was the dominant component. Soot was present as small agglomerates composed of few particles, but also as bigger agglomerates. Metal-containing particles of various chemical characteristics were abundant, with transition metals commonly occurring in these particles. The physicochemical characteristics of aerosols indicate that despite a relatively low mass concentration, their adverse health impact could be very strong because of the high content of nanoparticles, the abundance of soot and other fuel combustion-related particles, and the high incidence of transition metal-rich particles. Microbiological analysis was based on cultures on both solid and liquid agar. The MALDI-TOF method was used for species identification—for bacteria and fungi. Twelve different species of bacteria were isolated from the collected samples of aerosols. The most frequently isolated species was Gram-positive sporulating
Bacillus licheniformis.
The isolated mold fungi were of the genus
Aspergillus
. |
---|---|
ISSN: | 0269-4042 1573-2983 |
DOI: | 10.1007/s10653-021-00950-x |