Stability of AgIII towards Halides in Organosilver(III) Complexes

The involvement of silver in two‐electron AgI/AgIII processes is currently emerging. However, the range of stability of the required and uncommon AgIII species is virtually unknown. Here, the stability of AgIII towards the whole set of halide ligands in the organosilver(III) complex frame [(CF3)3AgX...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2021-09, Vol.27 (50), p.12796-12806
Hauptverfasser: Joven‐Sancho, Daniel, Baya, Miguel, Falvello, Larry R., Martín, Antonio, Orduna, Jesús, Menjón, Babil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The involvement of silver in two‐electron AgI/AgIII processes is currently emerging. However, the range of stability of the required and uncommon AgIII species is virtually unknown. Here, the stability of AgIII towards the whole set of halide ligands in the organosilver(III) complex frame [(CF3)3AgX]− (X=F, Cl, Br, I, At) is theoretically analyzed. The results obtained depend on a single factor: the nature of X. Even the softest and least electronegative halides (I and At) are found to form reasonably stable AgIII−X bonds. Our estimates were confirmed by experiment. The whole series of nonradiative halide complexes [PPh4][(CF3)3AgX] (X=F, Cl, Br, I) has been experimentally prepared and all its constituents have been isolated in pure form. The pseudohalides [PPh4][(CF3)3AgCN] and [PPh4][(CF3)3Ag(N3)] have also been isolated, the latter being the first silver(III) azido complex. Except for the iodo compound, all the crystal and molecular structures have been established by single‐crystal X‐ray diffraction methods. The decomposition paths of the [(CF3)3AgX]− entities at the unimolecular level have been examined in the gas phase by multistage mass spectrometry (MSn). The experimental detection of the two series of mixed complexes [CF3AgX]− and [FAgX]− arising from the corresponding parent species [(CF3)3AgX]− demonstrate that the Ag−X bond is particularly robust. Our experimental observations are rationalized with the aid of theoretical methods. Smooth variation with the electronegativity of X is also observed in the thermolyses of bulk samples. The thermal stability in the solid state gradually decreases from X=F (145 °C, dec.) to X=I (78 °C, dec.) The experimentally established compatibility of AgIII with the heaviest halides is of particular relevance to silver‐mediated or silver‐catalyzed processes. Unexpectedly robust: We provide theoretical evidence and experimental proof of the unexpected stability of the AgIII−X bond with every halogen (X=F, Cl, Br and I) in the series of square‐planar organosilver(III) derivatives [PPh4][(CF3)3AgX]. Unimolecular decomposition paths were analyzed by combined theoretical and experimental methods, whereby the two series of linear complexes [CF3AgX]− and [FAgX]− were detected. The first silver(III) azide was also prepared, isolated and structurally characterized.
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.202101859