Fully automated deep learning system for detecting sarcopenia on brain MRI in glioblastoma

Abstract Aims Glioblastoma multiforme (GBM) is an aggressive brain malignancy. Performance status is an important prognostic factor but is subjectively evaluated, resulting in inaccuracy. Objective markers of frailty/physical condition, such as measures of skeletal muscle mass can be evaluated on cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuro-oncology (Charlottesville, Va.) Va.), 2021-10, Vol.23 (Supplement_4), p.iv13-iv13
Hauptverfasser: Mauricaite, Radvile, Mi, Ella, Chen, Jiarong, Ho, Andrew, Pakzad-Shahabi, Lillie, Williams, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Aims Glioblastoma multiforme (GBM) is an aggressive brain malignancy. Performance status is an important prognostic factor but is subjectively evaluated, resulting in inaccuracy. Objective markers of frailty/physical condition, such as measures of skeletal muscle mass can be evaluated on cross-sectional imaging and is associated with cancer survival. In GBM, temporalis muscle has been identified as a skeletal muscle mass surrogate and a prognostic factor. However, current manual muscle quantification is time consuming, limiting clinical adoption. We previously developed a deep learning system for automated temporalis muscle quantification, with high accuracy (Dice coefficient 0.912), and showed muscle cross-sectional area is independently significantly associated with survival in GBM (HR 0.380). However, it required manual selection of the temporalis muscle-containing MRI slice. Thus, in this work we aimed to develop a fully automatic deep-learning system, using the eyeball as an anatomic landmark for automatic slice selection, to quantify temporalis and validate on independent datasets. Method 3D brain MRI scans were obtained from four datasets: our in-house glioblastoma patient dataset, TCGA-GBM, IVY-GAP and REMBRANDT. Manual eyeball and temporalis segmentations were performed on 2D MRI images by two experienced readers. Two neural networks (2D U-Nets) were trained, one to automatically segment the eyeball and the other to segment the temporalis muscle on 2D MRI images using Dice loss function. The cross sectional area of eyeball segmentations were quantified and thresholded, to select the superior orbital MRI slice from each scan. This slice underwent temporalis segmentation, whose cross sectional area was then quantified. Accuracy of automatically predicted eyeball and temporalis segmentations were compared to manual ground truth segmentations on metrics of Dice coefficient, precision, recall and Hausdorff distance. Accuracy of MRI slice selection (by the eyeball segmentation model) for temporalis segmentation was determined by comparing automatically selected slices to slices selected manually by a trained neuro-oncologist. Results 398 images from 185 patients and 366 images from 145 patients were used for the eyeball and temporalis segmentation models, respectively. 61 independent TCGA-GBM scans formed a validation cohort to assess the performance of the full pipeline. The model achieved high accuracy in eyeball segmentation, with test set D
ISSN:1522-8517
1523-5866
DOI:10.1093/neuonc/noab195.031