Biologically informed deep neural network for prostate cancer discovery

The determination of molecular features that mediate clinically aggressive phenotypes in prostate cancer remains a major biological and clinical challenge 1 , 2 . Recent advances in interpretability of machine learning models as applied to biomedical problems may enable discovery and prediction in c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2021-10, Vol.598 (7880), p.348-352
Hauptverfasser: Elmarakeby, Haitham A., Hwang, Justin, Arafeh, Rand, Crowdis, Jett, Gang, Sydney, Liu, David, AlDubayan, Saud H., Salari, Keyan, Kregel, Steven, Richter, Camden, Arnoff, Taylor E., Park, Jihye, Hahn, William C., Van Allen, Eliezer M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The determination of molecular features that mediate clinically aggressive phenotypes in prostate cancer remains a major biological and clinical challenge 1 , 2 . Recent advances in interpretability of machine learning models as applied to biomedical problems may enable discovery and prediction in clinical cancer genomics 3 – 5 . Here we developed P-NET—a biologically informed deep learning model—to stratify patients with prostate cancer by treatment-resistance state and evaluate molecular drivers of treatment resistance for therapeutic targeting through complete model interpretability. We demonstrate that P-NET can predict cancer state using molecular data with a performance that is superior to other modelling approaches. Moreover, the biological interpretability within P-NET revealed established and novel molecularly altered candidates, such as MDM4 and FGFR1 , which were implicated in predicting advanced disease and validated in vitro. Broadly, biologically informed fully interpretable neural networks enable preclinical discovery and clinical prediction in prostate cancer and may have general applicability across cancer types. A biologically informed, interpretable deep learning model has been developed to evaluate molecular drivers of resistance to cancer treatment, predict clinical outcomes and guide hypotheses on disease progression.
ISSN:0028-0836
1476-4687
DOI:10.1038/s41586-021-03922-4