Customizable, conformal, and stretchable 3D electronics via predistorted pattern generation and thermoforming
Recently, three-dimensional electronics (3DE) is attracting huge interest owing to the increasing demands for seamless integration of electronic systems on 3D curvilinear surfaces. However, it is still challenging to fabricate 3DE with high customizability, conformability, and stretchability. Here,...
Gespeichert in:
Veröffentlicht in: | Science advances 2021-10, Vol.7 (42), p.eabj0694-eabj0694 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, three-dimensional electronics (3DE) is attracting huge interest owing to the increasing demands for seamless integration of electronic systems on 3D curvilinear surfaces. However, it is still challenging to fabricate 3DE with high customizability, conformability, and stretchability. Here, we present a fabrication method of 3DE based on predistorted pattern generation and thermoforming. Through this method, custom-designed 3DE is fabricated through the thermoforming process. The fabricated 3DE has high 3D conformability because the thermoforming process enables the complete replication of both the overall shape and the surface texture of the 3D mold. Furthermore, the usage of thermoplastic elastomer and a liquid metal–based conductive electrode allows for high thermoformability during the device fabrication as well as high stretchability during the device operation. We believe that this technology can enable a wide range of new functionalities and multiscale 3D morphologies in wearable electronics. |
---|---|
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.abj0694 |