Optogenetic Activation of V1 Interneurons Reveals the Multimodality of Spinal Locomotor Networks in the Neonatal Mouse

In the spinal cord, classes of interneurons have been studied to determine their role in producing or regulating locomotion. It is unclear whether all locomotor behaviors are produced by the same circuitry or engage different subsets of neurons. Here, in neonatal mice of either sex, we test this ide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2021-10, Vol.41 (41), p.8545-8561
Hauptverfasser: Falgairolle, Melanie, O'Donovan, Michael J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the spinal cord, classes of interneurons have been studied to determine their role in producing or regulating locomotion. It is unclear whether all locomotor behaviors are produced by the same circuitry or engage different subsets of neurons. Here, in neonatal mice of either sex, we test this idea by comparing the actions of a class of spinal, inhibitory interneuron (V1) expressing channelrhodopsin driven by the transcription factor on the rhythms elicited by different methods. We find that, although the overall locomotor activities are similar, V1 interneuron depolarization produces opposite effects depending of the mode of activation of the locomotor circuitry. The differential behavior of V1 neurons suggests that their function depends on how the locomotor rhythm is activated and is consistent with the idea that the functional organization of the corresponding locomotor networks also differs. The neural networks dictating the execution of fictive locomotion are located in the spinal cord. It is generally assumed that the mode of activation of these spinal networks should not change the recruitment or function of neurons. Here, we manipulated the activity of a class of interneuron (V1), which targets these networks and found that their activation induces opposite effects depending on the mode of activation. This suggests that the mode of activation of the spinal networks differentially recruits either V1 interneurons or other interneurons, or both.
ISSN:0270-6474
1529-2401
1529-2401
DOI:10.1523/JNEUROSCI.0875-21.2021