Angelman syndrome genotypes manifest varying degrees of clinical severity and developmental impairment
Angelman Syndrome (AS) is a severe neurodevelopmental disorder due to impaired expression of UBE3A in neurons. There are several genetic mechanisms that impair UBE3A expression, but they differ in how neighboring genes on chromosome 15 at 15q11–q13 are affected. There is evidence that different gene...
Gespeichert in:
Veröffentlicht in: | Molecular psychiatry 2021-07, Vol.26 (7), p.3625-3633 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Angelman Syndrome (AS) is a severe neurodevelopmental disorder due to impaired expression of
UBE3A
in neurons. There are several genetic mechanisms that impair
UBE3A
expression, but they differ in how neighboring genes on chromosome 15 at 15q11–q13 are affected. There is evidence that different genetic subtypes present with different clinical severity, but a systematic quantitative investigation is lacking. Here we analyze natural history data on a large sample of individuals with AS (
n
= 250, 848 assessments), including clinical scales that quantify development of motor, cognitive, and language skills (Bayley Scales of Infant Development, Third Edition; Preschool Language Scale, Fourth Edition), adaptive behavior (Vineland Adaptive Behavioral Scales, Second Edition), and AS-specific symptoms (AS Clinical Severity Scale). We found that clinical severity, as captured by these scales, differs between genetic subtypes: individuals with
UBE3A
pathogenic variants and imprinting defects (IPD) are less affected than individuals with uniparental paternal disomy (UPD); of those with
UBE3A
pathogenic variants, individuals with truncating mutations are more impaired than those with missense mutations. Individuals with a deletion that encompasses
UBE3A
and other genes are most impaired, but in contrast to previous work, we found little evidence for an influence of deletion length (class I vs. II) on severity of manifestations. The results of this systematic analysis highlight the relevance of genomic regions beyond
UBE3A
as contributing factors in the AS phenotype, and provide important information for the development of new therapies for AS. More generally, this work exemplifies how increasing genetic irregularities are reflected in clinical severity. |
---|---|
ISSN: | 1359-4184 1476-5578 |
DOI: | 10.1038/s41380-020-0858-6 |