Climate risk to European fisheries and coastal communities

With the majority of the global human population living in coastal regions, correctly characterizing the climate risk that ocean-dependent communities and businesses are exposed to is key to prioritizing the finite resources available to support adaptation. We apply a climate risk analysis across th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-10, Vol.118 (40), p.1-10
Hauptverfasser: Payne, Mark R., Kudahl, Manja, Engelhard, Georg H., Peck, Myron A., Pinnegar, John K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the majority of the global human population living in coastal regions, correctly characterizing the climate risk that ocean-dependent communities and businesses are exposed to is key to prioritizing the finite resources available to support adaptation. We apply a climate risk analysis across the European fisheries sector to identify the most at-risk fishing fleets and coastal regions and then link the two analyses together. We employ an approach combining biological traits with physiological metrics to differentiate climate hazards between 556 populations of fish and use these to assess the relative climate risk for 380 fishing fleets and 105 coastal regions in Europe. Countries in southeast Europe as well as the United Kingdom have the highest risks to both fishing fleets and coastal regions overall, while in other countries, the risk-profile is greater at either the fleet level or at the regional level. European fisheries face a diversity of challenges posed by climate change; climate adaptation, therefore, needs to be tailored to each country, region, and fleet’s specific situation. Our analysis supports this process by highlighting where and what adaptation measures might be needed and informing where policy and business responses could have the greatest impact.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2018086118