Polygenic basis and biomedical consequences of telomere length variation

Telomeres, the end fragments of chromosomes, play key roles in cellular proliferation and senescence. Here we characterize the genetic architecture of naturally occurring variation in leukocyte telomere length (LTL) and identify causal links between LTL and biomedical phenotypes in 472,174 well-char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2021-10, Vol.53 (10), p.1425-1433
Hauptverfasser: Codd, Veryan, Wang, Qingning, Allara, Elias, Musicha, Crispin, Kaptoge, Stephen, Stoma, Svetlana, Jiang, Tao, Hamby, Stephen E., Braund, Peter S., Bountziouka, Vasiliki, Budgeon, Charley A., Denniff, Matthew, Swinfield, Chloe, Papakonstantinou, Manolo, Sheth, Shilpi, Nanus, Dominika E., Warner, Sophie C., Wang, Minxian, Khera, Amit V., Eales, James, Ouwehand, Willem H., Thompson, John R., Di Angelantonio, Emanuele, Wood, Angela M., Butterworth, Adam S., Danesh, John N., Nelson, Christopher P., Samani, Nilesh J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Telomeres, the end fragments of chromosomes, play key roles in cellular proliferation and senescence. Here we characterize the genetic architecture of naturally occurring variation in leukocyte telomere length (LTL) and identify causal links between LTL and biomedical phenotypes in 472,174 well-characterized UK Biobank participants. We identified 197 independent sentinel variants associated with LTL at 138 genomic loci (108 new). Genetically determined differences in LTL were associated with multiple biological traits, ranging from height to bone marrow function, as well as several diseases spanning neoplastic, vascular and inflammatory pathologies. Finally, we estimated that, at the age of 40 years, people with an LTL >1 s.d. shorter than the population mean had a 2.5-year-lower life expectancy compared with the group with ≥1 s.d. longer LDL. Overall, we furnish new insights into the genetic regulation of LTL, reveal wide-ranging influences of LTL on physiological traits, diseases and longevity, and provide a powerful resource available to the global research community. Genome-wide association and Mendelian randomization analyses in the UK Biobank identify genetic variants associated with leukocyte telomere length and highlight putative causal links between telomere length and biomedical phenotypes.
ISSN:1061-4036
1546-1718
DOI:10.1038/s41588-021-00944-6